These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 8427934)
1. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization. Vajda S; Jafri MS; Sezerman OU; DeLisi C Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934 [TBL] [Abstract][Full Text] [Related]
2. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor. Ripoll DR; Piela L; Vásquez M; Scheraga HA Proteins; 1991; 10(3):188-98. PubMed ID: 1715563 [TBL] [Abstract][Full Text] [Related]
3. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor. Williams RL; Vila J; Perrot G; Scheraga HA Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032 [TBL] [Abstract][Full Text] [Related]
4. Determining minimum energy conformations of polypeptides by dynamic programming. Vajda S; Delisi C Biopolymers; 1990 Dec; 29(14):1755-72. PubMed ID: 2207285 [TBL] [Abstract][Full Text] [Related]
5. New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin. Ripoll DR; Liwo A; Scheraga HA Biopolymers; 1998 Aug; 46(2):117-26. PubMed ID: 9664845 [TBL] [Abstract][Full Text] [Related]
6. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin. Ripoll DR; Scheraga HA Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048 [TBL] [Abstract][Full Text] [Related]
7. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Lee J; Scheraga HA; Rackovsky S Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844 [TBL] [Abstract][Full Text] [Related]
8. Conformational analysis of endothelin-1: effects of solvation free energy. Hempel JC; Fine RM; Hassan M; Ghoul W; Guaragna A; Koerber SC; Li Z; Hagler AT Biopolymers; 1995 Sep; 36(3):283-301. PubMed ID: 7669916 [TBL] [Abstract][Full Text] [Related]
9. A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Deane CM; Blundell TL Proteins; 2000 Jul; 40(1):135-44. PubMed ID: 10813838 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the conformational free energies of loops in proteins. Smith KC; Honig B Proteins; 1994 Feb; 18(2):119-32. PubMed ID: 8159662 [TBL] [Abstract][Full Text] [Related]
11. [Can the local energy minimization refine the PDB structures of different resolution universally?]. Godzi MG; Gromova AP; Oferkin IV; Mironov PV Biofizika; 2009; 54(4):622-9. PubMed ID: 19795782 [TBL] [Abstract][Full Text] [Related]
12. Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms. Pedersen JT; Moult J Proteins; 1995 Nov; 23(3):454-60. PubMed ID: 8710838 [TBL] [Abstract][Full Text] [Related]
13. Criteria that discriminate between native proteins and incorrectly folded models. Novotný J; Rashin AA; Bruccoleri RE Proteins; 1988; 4(1):19-30. PubMed ID: 3186690 [TBL] [Abstract][Full Text] [Related]
14. The origins of protein secondary structure. Effects of packing density and hydrogen bonding studied by a fast conformational search. Hunt NG; Gregoret LM; Cohen FE J Mol Biol; 1994 Aug; 241(2):214-25. PubMed ID: 8057361 [TBL] [Abstract][Full Text] [Related]
15. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
16. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins. Rabow AA; Scheraga HA J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272 [TBL] [Abstract][Full Text] [Related]
17. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. Vila J; Williams RL; Vásquez M; Scheraga HA Proteins; 1991; 10(3):199-218. PubMed ID: 1715564 [TBL] [Abstract][Full Text] [Related]
18. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. Ulmschneider JP; Jorgensen WL J Am Chem Soc; 2004 Feb; 126(6):1849-57. PubMed ID: 14871118 [TBL] [Abstract][Full Text] [Related]
19. Free energy surfaces of beta-hairpin and alpha-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Felts AK; Harano Y; Gallicchio E; Levy RM Proteins; 2004 Aug; 56(2):310-21. PubMed ID: 15211514 [TBL] [Abstract][Full Text] [Related]
20. Conformational solution studies of neuropeptide gamma using CD and NMR spectroscopy. Rodziewicz-Motowidło S; Brzozowskl K; Legowska A; Liwo A; Silbering J; Smoluch M; Rolka K J Pept Sci; 2002 May; 8(5):211-26. PubMed ID: 12043996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]