BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8428)

  • 1. Synthesis of omega-alicyclic fatty acids from cyclic precursors in Bacillus subtilis.
    Dreher R; Poralla K; König WA
    J Bacteriol; 1976 Sep; 127(3):1136-40. PubMed ID: 8428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of branched-chain and omega-alicyclic fatty acids on the transition temperature of bacillus subtilis lipids.
    Blume A; Dreher R; Poralla K
    Biochim Biophys Acta; 1978 Oct; 512(3):489-94. PubMed ID: 101245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes.
    Oshima M; Ariga T
    J Biol Chem; 1975 Sep; 250(17):6963-8. PubMed ID: 1158890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of -cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic bacillus. A new biosynthetic pathway.
    De Rosa M; Gambacorta A; Minale L; Bu'lock JD
    Biochem J; 1972 Jul; 128(4):751-4. PubMed ID: 4638790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [GAS CHROMATOGRAPHY RETENTION DATA AND STRUCTURE OF CHEMICAL COMPOUNDS. I. ALPHA-BRANCHED ALIPHATIC AND ALICYCLIC CARBOXYLIC ACID METHYL ESTERS].
    SCHOMBURG G
    J Chromatogr; 1964 Apr; 14():157-77. PubMed ID: 14165950
    [No Abstract]   [Full Text] [Related]  

  • 6. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase.
    Willecke K; Pardee AB
    J Biol Chem; 1971 Sep; 246(17):5264-72. PubMed ID: 4999353
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of growth decrease on the metabolism of fatty acids of Bacillus subtilis var. niger].
    Bureau G
    C R Acad Hebd Seances Acad Sci D; 1972 Jan; 274(3):468-71. PubMed ID: 4621930
    [No Abstract]   [Full Text] [Related]  

  • 8. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium.
    Suutari M; Laakso S
    Biochim Biophys Acta; 1992 Jun; 1126(2):119-24. PubMed ID: 1627613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthetic studies on the origin of the cyclohexanecarboxylic acid moiety of ansatrienin A and omega-cyclohexyl fatty acids.
    Moore BS; Floss HG
    J Nat Prod; 1994 Mar; 57(3):382-6. PubMed ID: 8201312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Ring Size in ω-Alicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers.
    Poger D; Mark AE
    Langmuir; 2015 Oct; 31(42):11574-82. PubMed ID: 26444798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes.
    Salamanca D; Bühler K; Engesser KH; Schmid A; Karande R
    N Biotechnol; 2021 Jan; 60():200-206. PubMed ID: 33127412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lipA (yutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis.
    Martin N; Lombardía E; Altabe SG; de Mendoza D; Mansilla MC
    J Bacteriol; 2009 Dec; 191(24):7447-55. PubMed ID: 19820084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of ω-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber.
    Siristova L; Luhovy R; Sigler K; Rezanka T
    Extremophiles; 2011 May; 15(3):423-9. PubMed ID: 21487936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov.
    Goto K; Mochida K; Kato Y; Asahara M; Fujita R; An SY; Kasai H; Yokota A
    Int J Syst Evol Microbiol; 2007 Jun; 57(Pt 6):1276-1285. PubMed ID: 17551043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biosynthesis of linear or branched fatty acids, during sporulation of Bacillus subtilis var. Niger. Study by gas radiochromatography].
    Bureau G; Mazliak P
    C R Acad Hebd Seances Acad Sci D; 1971 Jan; 272(1):153-5. PubMed ID: 4994961
    [No Abstract]   [Full Text] [Related]  

  • 16. Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis.
    Cropp TA; Smogowicz AA; Hafner EW; Denoya CD; McArthur HA; Reynolds KA
    Can J Microbiol; 2000 Jun; 46(6):506-14. PubMed ID: 10913971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid.
    Paslawski JC; Headley JV; Hill GA; Nemati M
    Biodegradation; 2009 Feb; 20(1):125-33. PubMed ID: 18633718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and temperature on the fatty acid composition of bacillus acidocaldarius.
    De Rosa M; Gambacorta A; Bu'lock JD
    J Bacteriol; 1974 Jan; 117(1):212-4. PubMed ID: 4808902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid and beta-amino acid syntheses in strains of Bacillus subtilis producing iturinic antibiotics.
    Hourdou ML; Besson F; Tenoux I; Michel G
    Lipids; 1989 Nov; 24(11):940-4. PubMed ID: 2515402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative biosynthesis of ramified fatty acids of Bacillus subtilis var niger, in mesosome- or membrane-enriched fractions].
    Bureau G; Mazliak P
    C R Acad Hebd Seances Acad Sci D; 1973 Jan; 276(2):221-4. PubMed ID: 4632906
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.