These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 842835)

  • 1. The measurement of enzyme-ligand dissociation constants by relaxation kinetics.
    Malcolm AD
    Anal Biochem; 1977 Feb; 77(2):529-31. PubMed ID: 842835
    [No Abstract]   [Full Text] [Related]  

  • 2. An accurate method for determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves.
    Horovitz A; Levitzki A
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6654-8. PubMed ID: 3477796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of enzymes: kinetic aspects.
    Cardemil E
    Biol Res; 1996; 29(1):13-20. PubMed ID: 9267513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.
    Stone SR; Morrison JF
    Biochim Biophys Acta; 1983 Jun; 745(3):237-46. PubMed ID: 6860674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential model for a two-ligand, regulatory enzyme. Part 2: Performance tests of the 'INDEXP' computer program for the determination of model constants from initial velocity data. I. Artificial data.
    Ainsworth S; Gregory RB; Kinderlerer J
    Int J Biomed Comput; 1981 Jul; 12(4):315-34. PubMed ID: 7263100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Hill slopes predicted by the four-ligand exponential model for a regulatory enzyme.
    Ainsworth S
    Biochem J; 1986 Mar; 234(3):717-26. PubMed ID: 3718493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of viscosity on enzyme-ligand dissociation. II. Role of the microenvironment.
    Welch GR; Somogyi B; Matkó J; Papp S
    J Theor Biol; 1983 Jan; 100(2):211-38. PubMed ID: 6865446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of dissociation and Michaelis constants at near-equal enzyme-substrate concentrations.
    Smith GD; Eisenthal R; Harrison R
    Anal Biochem; 1977 May; 79(1-2):643-7. PubMed ID: 869205
    [No Abstract]   [Full Text] [Related]  

  • 9. Simple and universal method to determine dissociation constants for enzyme/ligand complexes.
    Bzowska A; Magnowska L
    Nucleic Acids Symp Ser (Oxf); 2008; (52):669-70. PubMed ID: 18776557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular ligand substitution reactions.
    Jenkins WT
    Prog Clin Biol Res; 1984; 144B():89-96. PubMed ID: 6718418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the dissociation constants of enzyme-substrate complexes from steady-state measurements. Interpretation of pH-independence of Km.
    Cornish-Bowden A
    Biochem J; 1976 Feb; 153(2):455-61. PubMed ID: 6011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the direct linear plot to estimate binding constants for protein-ligand interactions.
    Woosley JT; Muldoon TG
    Biochem Biophys Res Commun; 1976 Jul; 71(1):155-60. PubMed ID: 183760
    [No Abstract]   [Full Text] [Related]  

  • 13. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Specific ligand induced dimerization of allosteric enzymes].
    Kurganov BI
    Mol Biol (Mosk); 1982; 16(2):424-33. PubMed ID: 7073865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the number of essential ligand binding sites in enzymes using the slopes of the Wang-Srivastava plots.
    Tan Y
    Anal Biochem; 1998 Mar; 257(2):228-30. PubMed ID: 9514780
    [No Abstract]   [Full Text] [Related]  

  • 16. [Description of the kinetics of allosteric polymeric enzymes with 2 ligands based on the generalized Ising model].
    Cherepanov DA
    Biofizika; 1988; 33(1):41-5. PubMed ID: 3370238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exponential model for a regulatory enzyme. An interpretation of the linear free-energy relationship.
    Ainsworth S
    Biochem J; 1986 Dec; 240(3):811-5. PubMed ID: 3827868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand partitioning into membranes: its significance in determining Km and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes.
    Parry G; Palmer DN; Williams DJ
    FEBS Lett; 1976 Aug; 67(2):123-9. PubMed ID: 955110
    [No Abstract]   [Full Text] [Related]  

  • 19. A steady-state kinetic method for the verification of the rapid-equilibrium assumption in allosteric enzymes.
    Symcox MM; Reinhart GD
    Anal Biochem; 1992 Nov; 206(2):394-9. PubMed ID: 1443611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.