BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8428625)

  • 1. The low-temperature folding intermediate of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima shows a native-like cooperative unfolding transition.
    Rehaber V; Jaenicke R
    FEBS Lett; 1993 Feb; 317(1-2):163-6. PubMed ID: 8428625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding intermediates of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima are trapped at low temperature.
    Schultes V; Jaenicke R
    FEBS Lett; 1991 Sep; 290(1-2):235-8. PubMed ID: 1915883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima.
    Rehaber V; Jaenicke R
    J Biol Chem; 1992 Jun; 267(16):10999-1006. PubMed ID: 1366231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of an ionic network leads to accelerated thermal denaturation of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima.
    Pappenberger G; Schurig H; Jaenicke R
    J Mol Biol; 1997 Dec; 274(4):676-83. PubMed ID: 9417944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous folding of the excised coenzyme-binding domain of D-glyceraldehyde 3-phosphate dehydrogenase from Thermotoga maritima.
    Jecht M; Tomschy A; Kirschner K; Jaenicke R
    Protein Sci; 1994 Mar; 3(3):411-8. PubMed ID: 8019412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase.
    Beaucamp N; Hofmann A; Kellerer B; Jaenicke R
    Protein Sci; 1997 Oct; 6(10):2159-65. PubMed ID: 9336838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ion pairs on the thermal stability of D-glyceraldehyde 3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima.
    Tomschy A; Böhm G; Jaenicke R
    Protein Eng; 1994 Dec; 7(12):1471-8. PubMed ID: 7716158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain.
    Wassenberg D; Schurig H; Liebl W; Jaenicke R
    Protein Sci; 1997 Aug; 6(8):1718-26. PubMed ID: 9260284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PGK-TIM fusion protein from Thermotoga maritima and its constituent parts are intrinsically stable and fold independently.
    Beaucamp N; Schurig H; Jaenicke R
    Biol Chem; 1997 Jul; 378(7):679-85. PubMed ID: 9278147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: strategies of protein stabilization.
    Jaenicke R
    FEMS Microbiol Rev; 1996 May; 18(2-3):215-24. PubMed ID: 8639329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution.
    Korndörfer I; Steipe B; Huber R; Tomschy A; Jaenicke R
    J Mol Biol; 1995 Mar; 246(4):511-21. PubMed ID: 7877172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stable cold folding intermediate of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase.
    Zhang NX; Wang C
    Eur J Biochem; 1999 Sep; 264(3):1002-8. PubMed ID: 10491151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima in Escherichia coli. Authenticity and kinetic properties of the recombinant enzyme.
    Tomschy A; Glockshuber R; Jaenicke R
    Eur J Biochem; 1993 May; 214(1):43-50. PubMed ID: 8508805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms.
    Dams T; Ostendorp R; Ott M; Rutkat K; Jaenicke R
    Eur J Biochem; 1996 Aug; 240(1):274-9. PubMed ID: 8925837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima.
    Wrba A; Schweiger A; Schultes V; Jaenicke R; Závodszky P
    Biochemistry; 1990 Aug; 29(33):7584-92. PubMed ID: 2271518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely thermostable L(+)-lactate dehydrogenase from Thermotoga maritima: cloning, characterization, and crystallization of the recombinant enzyme in its tetrameric and octameric state.
    Ostendorp R; Auerbach G; Jaenicke R
    Protein Sci; 1996 May; 5(5):862-73. PubMed ID: 8732758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding.
    Pande M; Dubey VK; Sahu V; Jagannadham MV
    J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold denaturation of alpha-lactalbumin.
    Mizuguchi M; Hashimoto D; Sakurai M; Nitta K
    Proteins; 2000 Mar; 38(4):407-13. PubMed ID: 10707027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the extreme thermostability of D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: analysis based on homology modelling.
    Szilágyi A; Závodszky P
    Protein Eng; 1995 Aug; 8(8):779-89. PubMed ID: 8637847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.