These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8428944)

  • 41. Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site.
    Moran P; Raab H; Kohr WJ; Caras IW
    J Biol Chem; 1991 Jan; 266(2):1250-7. PubMed ID: 1824699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signal peptidase can cleave inside a polytopic membrane protein.
    Beltzer JP; Wessels HP; Spiess M
    FEBS Lett; 1989 Aug; 253(1-2):93-8. PubMed ID: 2668036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The signal-anchor domain of adenovirus E3-6.7K, a type III integral membrane protein, can direct adenovirus E3-gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum.
    Wilson-Rawls J; Deutscher SL; Wold WS
    Virology; 1994 May; 201(1):66-76. PubMed ID: 8178490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The hydrophobic domains in the carboxyl-terminal signal for GPI modification and in the amino-terminal leader peptide have similar structural requirements.
    Yan W; Shen F; Dillon B; Ratnam M
    J Mol Biol; 1998 Jan; 275(1):25-33. PubMed ID: 9451436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lysosomal targeting of Limp II membrane glycoprotein requires a novel Leu-Ile motif at a particular position in its cytoplasmic tail.
    Ogata S; Fukuda M
    J Biol Chem; 1994 Feb; 269(7):5210-7. PubMed ID: 8106503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase 1A6 to the endoplasmic reticulum.
    Ouzzine M; Magdalou J; Burchell B; Fournel-Gigleux S
    J Biol Chem; 1999 Oct; 274(44):31401-9. PubMed ID: 10531341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human pro-tumor necrosis factor: molecular determinants of membrane translocation, sorting, and maturation.
    Utsumi T; Akimaru K; Kawabata Z; Levitan A; Tokunaga T; Tang P; Ide A; Hung MC; Klostergaard J
    Mol Cell Biol; 1995 Nov; 15(11):6398-405. PubMed ID: 7565792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the signal for attachment of a glycophospholipid membrane anchor.
    Caras IW; Weddell GN; Williams SR
    J Cell Biol; 1989 Apr; 108(4):1387-96. PubMed ID: 2466848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosynthesis of phosphatidylinositol glycan-anchored membrane proteins. Design of a simple protein substrate to characterize the enzyme that cleaves the COOH-terminal signal peptide.
    Kodukula K; Micanovic R; Gerber L; Tamburrini M; Brink L; Udenfriend S
    J Biol Chem; 1991 Mar; 266(7):4464-70. PubMed ID: 1999429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of changes in the length of a signal/anchor domain on membrane insertion, subunit assembly, and intracellular transport of a type II integral membrane protein.
    Parks GD
    J Biol Chem; 1996 Mar; 271(12):7187-95. PubMed ID: 8636156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane.
    Kida Y; Morimoto F; Sakaguchi M
    J Biol Chem; 2009 Jan; 284(5):2861-2866. PubMed ID: 19010775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Definition and functional analysis of the signal/anchor domain of the human respiratory syncytial virus glycoprotein G.
    Lichtenstein DL; Roberts SR; Wertz GW; Ball LA
    J Gen Virol; 1996 Jan; 77 ( Pt 1)():109-18. PubMed ID: 8558117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Requirements for the membrane insertion of signal-anchor type proteins.
    High S; Flint N; Dobberstein B
    J Cell Biol; 1991 Apr; 113(1):25-34. PubMed ID: 1848865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge.
    Sakaguchi M; Tomiyoshi R; Kuroiwa T; Mihara K; Omura T
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):16-9. PubMed ID: 1729684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of signal peptide changes on the extracellular processing of streptokinase from Escherichia coli: requirement for secondary structure at the cleavage junction.
    Pratap J; Dikshit KL
    Mol Gen Genet; 1998 May; 258(4):326-33. PubMed ID: 9648736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane topogenesis of a type I signal-anchor protein, mouse synaptotagmin II, on the endoplasmic reticulum.
    Kida Y; Sakaguchi M; Fukuda M; Mikoshiba K; Mihara K
    J Cell Biol; 2000 Aug; 150(4):719-30. PubMed ID: 10952998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane.
    Hua X; Sakai J; Brown MS; Goldstein JL
    J Biol Chem; 1996 Apr; 271(17):10379-84. PubMed ID: 8626610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracellular processing and transport of NH2-terminally truncated forms of a hemagglutinin-neuraminidase type II glycoprotein.
    Spriggs MK; Collins PL
    J Cell Biol; 1990 Jul; 111(1):31-44. PubMed ID: 2164031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment.
    Caras IW; Weddell GN
    Science; 1989 Mar; 243(4895):1196-8. PubMed ID: 2466338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of cytoplasmic domain mutations on membrane anchoring and glycoprotein processing of herpes simplex virus type 1 glycoprotein C.
    Skoff AM; Holland TC
    Virology; 1993 Oct; 196(2):804-16. PubMed ID: 8396808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.