These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 8429017)
1. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. Brandt R; Lee G J Biol Chem; 1993 Feb; 268(5):3414-9. PubMed ID: 8429017 [TBL] [Abstract][Full Text] [Related]
2. Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation. Brandt R; Lee G; Teplow DB; Shalloway D; Abdel-Ghany M J Biol Chem; 1994 Apr; 269(16):11776-82. PubMed ID: 8163474 [TBL] [Abstract][Full Text] [Related]
3. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Goode BL; Feinstein SC J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098 [TBL] [Abstract][Full Text] [Related]
4. Domains of tau protein and interactions with microtubules. Gustke N; Trinczek B; Biernat J; Mandelkow EM; Mandelkow E Biochemistry; 1994 Aug; 33(32):9511-22. PubMed ID: 8068626 [TBL] [Abstract][Full Text] [Related]
5. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. Drewes G; Trinczek B; Illenberger S; Biernat J; Schmitt-Ulms G; Meyer HE; Mandelkow EM; Mandelkow E J Biol Chem; 1995 Mar; 270(13):7679-88. PubMed ID: 7706316 [TBL] [Abstract][Full Text] [Related]
6. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813 [TBL] [Abstract][Full Text] [Related]
7. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. McKibben KM; Rhoades E J Biol Chem; 2019 Dec; 294(50):19381-19394. PubMed ID: 31699899 [TBL] [Abstract][Full Text] [Related]
8. Proteolytic degradation of microtubule associated protein tau by thrombin. Olesen OF Biochem Biophys Res Commun; 1994 Jun; 201(2):716-21. PubMed ID: 8003007 [TBL] [Abstract][Full Text] [Related]
9. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein. Brandt R; Lee G Cell Motil Cytoskeleton; 1994; 28(2):143-54. PubMed ID: 8087873 [TBL] [Abstract][Full Text] [Related]
10. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. Kar S; Fan J; Smith MJ; Goedert M; Amos LA EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985 [TBL] [Abstract][Full Text] [Related]
11. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization. Gauthier-Kemper A; Suárez Alonso M; Sündermann F; Niewidok B; Fernandez MP; Bakota L; Heinisch JJ; Brandt R J Biol Chem; 2018 May; 293(21):8065-8076. PubMed ID: 29636414 [TBL] [Abstract][Full Text] [Related]
12. Tau protein binds to microtubules through a flexible array of distributed weak sites. Butner KA; Kirschner MW J Cell Biol; 1991 Nov; 115(3):717-30. PubMed ID: 1918161 [TBL] [Abstract][Full Text] [Related]
13. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Hernández-Vega A; Braun M; Scharrel L; Jahnel M; Wegmann S; Hyman BT; Alberti S; Diez S; Hyman AA Cell Rep; 2017 Sep; 20(10):2304-2312. PubMed ID: 28877466 [TBL] [Abstract][Full Text] [Related]
14. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Barré P; Eliezer D Protein Sci; 2013 Aug; 22(8):1037-48. PubMed ID: 23740819 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of microtubule-binding domain of bovine MAP4. Katsuki M; Tokuraku K; Murofushi H; Kotani S Cell Struct Funct; 1999 Oct; 24(5):337-44. PubMed ID: 15216891 [TBL] [Abstract][Full Text] [Related]
16. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis. Liu Y; Wang C; Destin G; Szaro BG Eur J Neurosci; 2015 May; 41(10):1263-75. PubMed ID: 25656701 [TBL] [Abstract][Full Text] [Related]
17. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly. Evans DB; Rank KB; Bhattacharya K; Thomsen DR; Gurney ME; Sharma SK J Biol Chem; 2000 Aug; 275(32):24977-83. PubMed ID: 10818091 [TBL] [Abstract][Full Text] [Related]
18. The balance between tau protein's microtubule growth and nucleation activities: implications for the formation of axonal microtubules. Brandt R; Lee G J Neurochem; 1993 Sep; 61(3):997-1005. PubMed ID: 8360696 [TBL] [Abstract][Full Text] [Related]
19. Expression of tau protein in non-neuronal cells: microtubule binding and stabilization. Lee G; Rook SL J Cell Sci; 1992 Jun; 102 ( Pt 2)():227-37. PubMed ID: 1400630 [TBL] [Abstract][Full Text] [Related]
20. Differences in the abilities of human tau isoforms to promote microtubule assembly. Scott CW; Blowers DP; Barth PT; Lo MM; Salama AI; Caputo CB J Neurosci Res; 1991 Sep; 30(1):154-62. PubMed ID: 1795399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]