These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8429056)

  • 1. Collapse of diseased arteries with eccentric cross section.
    Aoki T; Ku DN
    J Biomech; 1993 Feb; 26(2):133-42. PubMed ID: 8429056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes.
    Tang D; Yang J; Yang C; Ku DN
    J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile property of atheromatous plaque and an analysis of stress in atherosclerotic wall.
    Hayashi K; Imai Y
    J Biomech; 1997 Jun; 30(6):573-9. PubMed ID: 9165390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2001 Dec; 123(6):548-57. PubMed ID: 11783725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the sensitivity of wall stresses in diseased arteries to variable material properties.
    Williamson SD; Lam Y; Younis HF; Huang H; Patel S; Kaazempur-Mofrad MR; Kamm RD
    J Biomech Eng; 2003 Feb; 125(1):147-55. PubMed ID: 12661209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical buckling of curved arteries.
    Han HC
    Mol Cell Biomech; 2009 Jun; 6(2):93-9. PubMed ID: 19496257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty.
    Gourisankaran V; Sharma MG
    Crit Rev Biomed Eng; 2000; 28(1-2):47-51. PubMed ID: 10999364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model.
    Tang D; Yang C; Kobayashi S; Zheng J; Vito RP
    Ann Biomed Eng; 2003 Nov; 31(10):1182-93. PubMed ID: 14649492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear buckling of blood vessels: a theoretical study.
    Han HC
    J Biomech; 2008 Aug; 41(12):2708-13. PubMed ID: 18653191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2004 Jun; 126(3):363-70. PubMed ID: 15341174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High stress regions in saphenous vein bypass graft atherosclerotic lesions.
    Lee RT; Loree HM; Fishbein MC
    J Am Coll Cardiol; 1994 Dec; 24(7):1639-44. PubMed ID: 7963109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability.
    Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC
    J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics.
    Timmins LH; Meyer CA; Moreno MR; Moore JE
    J Endovasc Ther; 2008 Dec; 15(6):643-54. PubMed ID: 19090628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
    Cilla M; Peña E; Martínez MA
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.