These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8429060)

  • 1. Bone strain sensation via transmembrane potential changes in surface osteoblasts: loading rate and microstructural implications.
    Harrigan TP; Hamilton JJ
    J Biomech; 1993 Feb; 26(2):183-200. PubMed ID: 8429060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A case for bone canaliculi as the anatomical site of strain generated potentials.
    Cowin SC; Weinbaum S; Zeng Y
    J Biomech; 1995 Nov; 28(11):1281-97. PubMed ID: 8522542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone.
    Mak AF; Zhang JD
    J Biomech Eng; 2001 Feb; 123(1):66-70. PubMed ID: 11277304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteocyte and bone structure.
    Klein-Nulend J; Nijweide PJ; Burger EH
    Curr Osteoporos Rep; 2003 Jun; 1(1):5-10. PubMed ID: 16036059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone streaming potentials and currents depend on anatomical structure and loading orientation.
    MacGinitie LA; Stanely GD; Bieber WA; Wu DD
    J Biomech; 1997; 30(11-12):1133-9. PubMed ID: 9456381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
    Zeng Y; Cowin SC; Weinbaum S
    Ann Biomed Eng; 1994; 22(3):280-92. PubMed ID: 7978549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteocytes as a record of bone formation dynamics: a mathematical model of osteocyte generation in bone matrix.
    Buenzli PR
    J Theor Biol; 2015 Jan; 364():418-27. PubMed ID: 25285894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover.
    Parfitt AM
    Metabolism; 1976 Jul; 25(7):809-44. PubMed ID: 781470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological evidence of gap junctions between bone cells.
    Doty SB
    Calcif Tissue Int; 1981; 33(5):509-12. PubMed ID: 6797704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the torsional properties of single osteons.
    Lakes R
    J Biomech; 1995 Nov; 28(11):1409-10. PubMed ID: 8522553
    [No Abstract]   [Full Text] [Related]  

  • 15. Streaming potential measurements at low ionic concentrations reflect bone microstructure.
    MacGinitie LA; Seiz KG; Otter MW; Cochran GV
    J Biomech; 1994 Jul; 27(7):969-78. PubMed ID: 8063847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanobiology of bone.
    Iolascon G; Resmini G; Tarantino U
    Aging Clin Exp Res; 2013 Oct; 25 Suppl 1():S3-7. PubMed ID: 24046028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure.
    Takai E; Mauck RL; Hung CT; Guo XE
    J Bone Miner Res; 2004 Sep; 19(9):1403-10. PubMed ID: 15312240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of bone cells to biomechanical forces in vitro.
    Burger EH; Klein-Nulen J
    Adv Dent Res; 1999 Jun; 13():93-8. PubMed ID: 11276754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.