These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8429337)

  • 41. Continuous recording of renal isotope clearance by external monitoring during general anesthesia.
    Wagenknecht LV; Zamora M; Madsen PO
    Urol Int; 1970; 25(2):105-13. PubMed ID: 5422712
    [No Abstract]   [Full Text] [Related]  

  • 42. Renal function not impaired by hip arthroplasty. A prospective study of 26 patients.
    Stegmayr BG; Björck L; Kempi V; Semb H
    Acta Orthop Scand; 1992 Feb; 63(1):7-12. PubMed ID: 1738976
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A computer program for the analysis of double isotope renal clearance assays.
    Green JR
    Int J Biomed Comput; 1983 Jan; 14(1):23-30. PubMed ID: 6687464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transdermal optical renal function monitoring in humans: development, verification, and validation of a prototype device.
    Debreczeny MP; Dorshow RB
    J Biomed Opt; 2018 May; 23(5):1-9. PubMed ID: 29752796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Measurements of renal clearances with radioisotopes].
    Piepsz A
    Arch Pediatr; 1994 Jan; 1(1):78-86. PubMed ID: 8087226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary prevention for acute kidney injury in ambulatory patients.
    Musso CG; Rosell C; Gonzalez-Torres H; Ordonez JD; Aroca-Martinez G
    Postgrad Med; 2020 Nov; 132(8):746-748. PubMed ID: 32657222
    [No Abstract]   [Full Text] [Related]  

  • 47. Fluorescently Labeled Cyclodextrin Derivatives as Exogenous Markers for Real-Time Transcutaneous Measurement of Renal Function.
    Huang J; Weinfurter S; Pinto PC; Pretze M; Kränzlin B; Pill J; Federica R; Perciaccante R; Ciana LD; Masereeuw R; Gretz N
    Bioconjug Chem; 2016 Oct; 27(10):2513-2526. PubMed ID: 27611623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal isotope clearance by external monitoring and feedback technique. A new catheter-free clearance method.
    Christiansen N; Hansen H; Madsen PO
    J Urol; 1970 Jul; 104(1):26-35. PubMed ID: 5426705
    [No Abstract]   [Full Text] [Related]  

  • 49. Light-Emitting Agents for Noninvasive Assessment of Kidney Function.
    Huang J; Gretz N
    ChemistryOpen; 2017 Aug; 6(4):456-471. PubMed ID: 28794936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury.
    Mukherjee S; Bhaduri S; Harwood R; Murray P; Wilm B; Bearon R; Poptani H
    Sci Rep; 2024 Aug; 14(1):19922. PubMed ID: 39198525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of renal function and injury using near-infrared fluorimetry in experimental cardiorenal syndrome.
    Ikeda M; Wakasaki R; Schenning KJ; Swide T; Lee JH; Miller MB; Choi HS; Anderson S; Hutchens MP
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F629-F639. PubMed ID: 28077373
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success.
    Molitoris BA; Reilly ES
    Semin Nephrol; 2016 Jan; 36(1):31-41. PubMed ID: 27085733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals.
    Wang E; Meier DJ; Sandoval RM; Von Hendy-Willson VE; Pressler BM; Bunch RM; Alloosh M; Sturek MS; Schwartz GJ; Molitoris BA
    Kidney Int; 2012 Jan; 81(1):112-7. PubMed ID: 21881552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat.
    Wang E; Sandoval RM; Campos SB; Molitoris BA
    Am J Physiol Renal Physiol; 2010 Nov; 299(5):F1048-55. PubMed ID: 20685826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcutaneous renal function monitor: precision during unsteady hemodynamics.
    Bauman LA; Watson NE; Scuderi PE; Peters MA
    J Clin Monit Comput; 1998 May; 14(4):275-82. PubMed ID: 9754617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glomerular filtration rate in relation to extracellular fluid volume: similarity between 99mTc-DTPA and inulin.
    Gunasekera RD; Allison DJ; Peters AM
    Eur J Nucl Med; 1996 Jan; 23(1):49-54. PubMed ID: 8586101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noninvasive, real-time monitoring of renal function: the ambulatory renal monitor.
    Rabito CA; Moore RH; Bougas C; Dragotakes SC
    J Nucl Med; 1993 Feb; 34(2):199-207. PubMed ID: 8429337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Noninvasive, real-time monitoring of renal function during critical care.
    Rabito CA; Panico F; Rubin R; Tolkoff-Rubin N; Teplick R
    J Am Soc Nephrol; 1994 Jan; 4(7):1421-8. PubMed ID: 8161724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Renal function in patients at risk of contrast material-induced acute renal failure: noninvasive, real-time monitoring.
    Rabito CA; Fang LS; Waltman AC
    Radiology; 1993 Mar; 186(3):851-4. PubMed ID: 8430198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radioisotopic measurement of glomerular filtration rate in severe chronic renal failure.
    LaFrance ND; Drew HH; Walser M
    J Nucl Med; 1988 Dec; 29(12):1927-30. PubMed ID: 3057129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.