BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8430066)

  • 1. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical pathways of peptide degradation. VII. Solid state chemical instability of an aspartyl residue in a model hexapeptide.
    Oliyai C; Patel JP; Carr L; Borchardt RT
    Pharm Res; 1994 Jun; 11(6):901-8. PubMed ID: 7937533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting cleavage at aspartic residues in model decapeptides.
    Li N; Fort F; Kessler K; Wang W
    J Pharm Biomed Anal; 2009 Aug; 50(1):73-8. PubMed ID: 19395214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution.
    Brückner C; Imhof D; Scriba GK
    J Pharm Biomed Anal; 2013 Mar; 76():96-103. PubMed ID: 23298912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution stability of linear vs. cyclic RGD peptides.
    Bogdanowich-Knipp SJ; Chakrabarti S; Williams TD; Dillman RK; Siahaan TJ
    J Pept Res; 1999 May; 53(5):530-41. PubMed ID: 10424348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor.
    Bongers J; Heimer EP; Lambros T; Pan YC; Campbell RM; Felix AM
    Int J Pept Protein Res; 1992 Apr; 39(4):364-74. PubMed ID: 1428526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution.
    De Boni S; Scriba GK
    J Pharm Biomed Anal; 2007 Jan; 43(1):49-56. PubMed ID: 16846713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the aspartyl transpeptidation of daptomycin, a novel lipopeptide antibiotic.
    Kirsch LE; Molloy RM; Debono M; Baker P; Farid KZ
    Pharm Res; 1989 May; 6(5):387-93. PubMed ID: 2546142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of degradation of a cyclic hexapeptide (somatostatin analogue) in aqueous solution.
    Krishnamoorthy R; Mitra AK
    Pharm Res; 1992 Oct; 9(10):1314-20. PubMed ID: 1360156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid state chemical instability of an asparaginyl residue in a model hexapeptide.
    Oliyai C; Patel JP; Carr L; Borchardt RT
    J Pharm Sci Technol; 1994; 48(3):167-23. PubMed ID: 8069519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of diketopiperazine formation using model peptides.
    Goolcharran C; Borchardt RT
    J Pharm Sci; 1998 Mar; 87(3):283-8. PubMed ID: 9523979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomerization and epimerization of the aspartyl tetrapeptide Ala-Phe-Asp-GlyOH at pH 10-A CE study.
    Brückner C; Bunz SC; Imhof D; Neusüss C; Scriba GK
    Electrophoresis; 2013 Sep; 34(18):2666-73. PubMed ID: 23533053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry.
    De Boni S; Neusüss C; Pelzing M; Scriba GK
    Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon.
    Joshi AB; Kirsch LE
    Int J Pharm; 2004 Apr; 273(1-2):213-9. PubMed ID: 15010145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.