These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 8430066)

  • 21. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stability and degradation pathway of recombinant human parathyroid hormone: deamidation of asparaginyl residue and peptide bond cleavage at aspartyl and asparaginyl residues.
    Nabuchi Y; Fujiwara E; Kuboniwa H; Asoh Y; Ushio H
    Pharm Res; 1997 Dec; 14(12):1685-90. PubMed ID: 9453054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism.
    Hyland LJ; Tomaszek TA; Meek TD
    Biochemistry; 1991 Aug; 30(34):8454-63. PubMed ID: 1883831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues.
    Lura R; Schirch V
    Biochemistry; 1988 Oct; 27(20):7671-7. PubMed ID: 3207697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of stereoisomers and isoforms of a tryptic heptapeptide fragment of human growth hormone and analysis by reverse-phase HPLC and capillary electrophoresis.
    Vinther A; Holm A; Høeg-Jensen T; Jespersen AM; Klausen NK; Christensen T; Sørensen HH
    Eur J Biochem; 1996 Jan; 235(1-2):304-9. PubMed ID: 8631346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mechanistic and kinetic study of the beta-lactone hydrolysis of Salinosporamide A (NPI-0052), a novel proteasome inhibitor.
    Denora N; Potts BC; Stella VJ
    J Pharm Sci; 2007 Aug; 96(8):2037-47. PubMed ID: 17554770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of aspartic acid isomerization and enantiomerization in model aspartyl tripeptides under forced conditions.
    Conrad U; Fahr A; Scriba GK
    J Pharm Sci; 2010 Oct; 99(10):4162-73. PubMed ID: 20737625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation kinetics of an aspartyl-tripeptide-derived diketopiperazine under forced conditions.
    Brückner C; Fahr A; Imhof D; Scriba GK
    J Pharm Sci; 2012 Nov; 101(11):4178-90. PubMed ID: 22899465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone.
    Bhatt NP; Patel K; Borchardt RT
    Pharm Res; 1990 Jun; 7(6):593-9. PubMed ID: 2164192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and mechanism of degradation of klerval, a pseudo-tetrapeptide.
    Won CM; Molnar TE; Windisch VL; McKean RE
    Int J Pharm; 1999 Nov; 190(1):1-11. PubMed ID: 10528091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Mimics of Aspartate-Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp-X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach.
    Ly HGT; Mihaylov TT; Proost P; Pierloot K; Harvey JN; Parac-Vogt TN
    Chemistry; 2019 Nov; 25(63):14370-14381. PubMed ID: 31469197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrolytic cleavage of pyroglutamyl-peptide bond. II. Effects of amino acid residue neighboring the pGlu moiety.
    Saito S; Ohki K; Sakura N; Hashimoto T
    Biol Pharm Bull; 1996 May; 19(5):768-70. PubMed ID: 8741593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palladium(II) complexes, as synthetic peptidases, regioselectively cleave the second peptide bond "upstream" from methionine and histidine side chains.
    Milović NM; Kostić NM
    J Am Chem Soc; 2002 May; 124(17):4759-69. PubMed ID: 11971725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation kinetics and mechanisms of moricizine hydrochloride in acidic medium.
    King SP; Sigvardson KW; Dudzinski J; Torosian G
    J Pharm Sci; 1992 Jun; 81(6):586-91. PubMed ID: 1522500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.
    Tyler-Cross R; Schirch V
    J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of antiflammin 2 under acidic conditions.
    Ye JM; Lee GE; Potti GK; Galelli JF; Wolfe JL
    J Pharm Sci; 1996 Jul; 85(7):695-9. PubMed ID: 8818992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid-state stability of human insulin. I. Mechanism and the effect of water on the kinetics of degradation in lyophiles from pH 2-5 solutions.
    Strickley RG; Anderson BD
    Pharm Res; 1996 Aug; 13(8):1142-53. PubMed ID: 8865303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switching of turn conformation in an aspartate anion peptide fragment by NH . . . O- hydrogen bonds.
    Onoda A; Yamamoto H; Yamada Y; Lee K; Adachi S; Okamura TA; Yoshizawa-Kumagaye K; Nakajima K; Kawakami T; Aimoto S; Ueyama N
    Biopolymers; 2005; 80(2-3):233-48. PubMed ID: 15633197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deamidation via cyclic imide in asparaginyl peptides.
    Capasso S; Mazzarella L; Sica F; Zagari A
    Pept Res; 1989; 2(2):195-200. PubMed ID: 2520758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides.
    Brennan TV; Clarke S
    Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.