These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8430084)

  • 1. Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity.
    Newell K; Franchi A; Pouysségur J; Tannock I
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):1127-31. PubMed ID: 8430084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase.
    Yamagata M; Hasuda K; Stamato T; Tannock IF
    Br J Cancer; 1998 Jun; 77(11):1726-31. PubMed ID: 9667639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype.
    Pouysségur J; Franchi A; Salomon JC; Silvestre P
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2698-701. PubMed ID: 6930659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism.
    Helmlinger G; Sckell A; Dellian M; Forbes NS; Jain RK
    Clin Cancer Res; 2002 Apr; 8(4):1284-91. PubMed ID: 11948144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors.
    Rotin D; Robinson B; Tannock IF
    Cancer Res; 1986 Jun; 46(6):2821-6. PubMed ID: 3698008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid pH in tumors and its potential for therapeutic exploitation.
    Tannock IF; Rotin D
    Cancer Res; 1989 Aug; 49(16):4373-84. PubMed ID: 2545340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth.
    Pouysségur J; Franchi A; Pagès G
    Novartis Found Symp; 2001; 240():186-96; discussion 196-8. PubMed ID: 11727929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH.
    Chiche J; Le Fur Y; Vilmen C; Frassineti F; Daniel L; Halestrap AP; Cozzone PJ; Pouysségur J; Lutz NW
    Int J Cancer; 2012 Apr; 130(7):1511-20. PubMed ID: 21484790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH in human tumor xenografts and transplanted rat tumors: effect of insulin, inorganic phosphate, and m-iodobenzylguanidine.
    Jähde E; Volk T; Atema A; Smets LA; Glüsenkamp KH; Rajewsky MF
    Cancer Res; 1992 Nov; 52(22):6209-15. PubMed ID: 1423263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of carbohydrate metabolism in animal cells: isolation of a glycolytic variant of Chinese hamster ovary cells.
    Morgan MJ; Faik P
    Cell Biol Int Rep; 1980 Feb; 4(2):121-7. PubMed ID: 7388964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the rates of aerobic glycolysis and glucose transport, unrelated to neoplastic transformation, in a series of BALB 3T3-derived cell lines.
    Peterkofsky B; Prather W
    Cancer Res; 1982 May; 42(5):1809-16. PubMed ID: 6802484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells.
    Mazzio EA; Smith B; Soliman KF
    Cell Biol Toxicol; 2010 Jun; 26(3):177-88. PubMed ID: 19784859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypersensitization of tumor cells to glycolytic inhibitors.
    Liu H; Hu YP; Savaraj N; Priebe W; Lampidis TJ
    Biochemistry; 2001 May; 40(18):5542-7. PubMed ID: 11331019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell mutants as a tool to study malignant transformation of fibroblasts.
    Pouysségur J; Franchi A; Silvestre P
    Prog Clin Biol Res; 1980; 41():931-44. PubMed ID: 7192865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of anaerobic glycolysis in Ehrlich ascites tumour cells.
    Schulz J; Baufeld A; Hofmann E; Rapoport TA; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1977; 36(10):1379-91. PubMed ID: 28629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antitumor activity of nigericin and 5-(N-ethyl-N-isopropyl)amiloride: an approach to therapy based on cellular acidification and the inhibition of regulation of intracellular pH.
    Hasuda K; Lee C; Tannock IF
    Oncol Res; 1994; 6(6):259-68. PubMed ID: 7865901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contributions of epithelial cells and fibers to rabbit lens ATP content and glycolysis.
    Winkler BS; Riley MV
    Invest Ophthalmol Vis Sci; 1991 Aug; 32(9):2593-8. PubMed ID: 1869412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic glycolysis in bone: lactic acid production by rat calvaria cells in culture.
    Felix R; Neuman WF; Fleisch H
    Am J Physiol; 1978 Jan; 234(1):C51-5. PubMed ID: 23680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.