BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8430184)

  • 1. Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences.
    Lin W; Tkach JA; Haacke EM; Masaryk TJ
    Radiology; 1993 Mar; 186(3):753-61. PubMed ID: 8430184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved time-of-flight MR angiography of the brain with magnetization transfer contrast.
    Edelman RR; Ahn SS; Chien D; Li W; Goldmann A; Mantello M; Kramer J; Kleefield J
    Radiology; 1992 Aug; 184(2):395-9. PubMed ID: 1620835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution.
    Atkinson D; Brant-Zawadzki M; Gillan G; Purdy D; Laub G
    Radiology; 1994 Mar; 190(3):890-4. PubMed ID: 8115646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Magnetic resonance angiography of the intracranial circle using magnetization transfer contrast (MTC)].
    Catalano C; Pavone P; Laghi A; Faroni J; Clementi M; Di Girolamo M; Albertini Petroni G; Passariello R
    Radiol Med; 1995 Mar; 89(3):245-9. PubMed ID: 7754116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography.
    Huston J; Rufenacht DA; Ehman RL; Wiebers DO
    Radiology; 1991 Dec; 181(3):721-30. PubMed ID: 1947088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High spatial resolution and high contrast visualization of brain arteries and veins: impact of blood pool contrast agent and water-selective excitation imaging at 3T.
    Spuentrup E; Jacobs JE; Kleimann JF; Wiethoff AJ; Poggenborg J; Brinker G; Loehr M; Möller-Hartmann W; Botnar RM; Ernestus RI; Lackner KJ
    Rofo; 2010 Dec; 182(12):1097-104. PubMed ID: 20803412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation.
    Grayev A; Shimakawa A; Cousins J; Turski P; Brittain J; Reeder S
    J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of time-of-flight and phase-contrast MR neuroangiographic techniques.
    Huston J; Ehman RL
    Radiographics; 1993 Jan; 13(1):5-19. PubMed ID: 8426937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast-enhanced MR angiography for the diagnosis of intracranial vascular disease: optimal dose of gadopentetate dimeglumine.
    Jung HW; Chang KH; Choi DS; Han MH; Han MC
    AJR Am J Roentgenol; 1995 Nov; 165(5):1251-5. PubMed ID: 7572513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial circulation: pulse-sequence considerations in three-dimensional (volume) MR angiography.
    Ruggieri PM; Laub GA; Masaryk TJ; Modic MT
    Radiology; 1989 Jun; 171(3):785-91. PubMed ID: 2717753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
    Davis WL; Warnock SH; Harnsberger HR; Parker DL; Chen CX
    J Comput Assist Tomogr; 1993; 17(1):15-21. PubMed ID: 8419427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracranial circulation: preliminary clinical results with three-dimensional (volume) MR angiography.
    Masaryk TJ; Modic MT; Ross JS; Ruggieri PM; Laub GA; Lenz GW; Haacke EM; Selman WR; Wiznitzer M; Harik SI
    Radiology; 1989 Jun; 171(3):793-9. PubMed ID: 2717754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques.
    Davis WL; Blatter DD; Harnsberger HR; Parker DL
    AJR Am J Roentgenol; 1994 Oct; 163(4):915-20. PubMed ID: 8092035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing three-dimensional time-of-flight MR angiography with variable repetition time.
    Tkach JA; Lin W; Duda JJ; Haacke EM; Masaryk TJ
    Radiology; 1994 Jun; 191(3):805-11. PubMed ID: 8184069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetization transfer contrast in MR imaging of the heart.
    Balaban RS; Chesnick S; Hedges K; Samaha F; Heineman FW
    Radiology; 1991 Sep; 180(3):671-5. PubMed ID: 1871277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of brain vascularization with magnetic resonance imaging.
    Grandin CB
    JBR-BTR; 2001; 84(6):273-5. PubMed ID: 11817482
    [No Abstract]   [Full Text] [Related]  

  • 17. [Unruptured intracranial aneurysms: evaluation with high-resolution MR angiography with magnetization transfer contrast (MTC) and tilted optimized nonsaturating excitation (TONE)].
    Kadota T; Hosomi N; Kuroda C; Nakagawa H
    Nihon Igaku Hoshasen Gakkai Zasshi; 1997 Nov; 57(13):853-9. PubMed ID: 9423313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition.
    Nael K; Fenchel M; Salamon N; Duckwiler GR; Laub G; Finn JP; Villablanca JP
    Invest Radiol; 2006 Oct; 41(10):763-8. PubMed ID: 16971800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR angiography of normal pelvic arteries: comparison of signal intensity and contrast-to-noise ratio for three different inflow techniques.
    Yucel EK; Silver MS; Carter AP
    AJR Am J Roentgenol; 1994 Jul; 163(1):197-201. PubMed ID: 8010214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preliminary trial of three-dimensional water-excitation magnetization transfer contrast MR imaging of articular cartilage].
    Yoshioka H; Lang P; Ikeda K; Niitsu M; Itai Y
    Nihon Igaku Hoshasen Gakkai Zasshi; 2001 Sep; 61(10):545-7. PubMed ID: 11676173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.