These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 843079)

  • 1. Uncoupling of hamster brown adipose and liver mitochondria by 2-azido-4-nitrophenol and binding properties of the reagent.
    Cyboron GW; Dryer RL
    Arch Biochem Biophys; 1977 Feb; 179(1):141-6. PubMed ID: 843079
    [No Abstract]   [Full Text] [Related]  

  • 2. Stoicheiometries of proton translocation by mitochondria.
    Nicholls DG
    Biochem Soc Trans; 1977; 5(1):200-3. PubMed ID: 19316
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic control in isolated brown fat cells.
    Lindberg O; Prusiner SB; Cannon B; Ching TM; Eisenhardt RH
    Lipids; 1970 Feb; 5(2):204-9. PubMed ID: 4314248
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of amyl azide on respiration and oxidative phosphorylation in mitochondria.
    Bogucka K; Wojtczak L; EreciƄska M
    Acta Biochim Pol; 1970; 17(3):239-46. PubMed ID: 4320528
    [No Abstract]   [Full Text] [Related]  

  • 5. Control of sn-glycerol 3-phosphate oxidation in brown adipose tissue mitochondria by calcium and acyl-CoA.
    Bukowiecki LJ; Lindberg O
    Biochim Biophys Acta; 1974 Apr; 348(1):115-25. PubMed ID: 4210023
    [No Abstract]   [Full Text] [Related]  

  • 6. [Mitochondria from brown adipose tissue: uncoupling of respiratory chain phosphorylation by long fatty acids and recoupling by guanosine triphosphate].
    Rafael J; Ludolph HJ; Hohorst HJ
    Hoppe Seylers Z Physiol Chem; 1969 Sep; 350(9):1121-31. PubMed ID: 5388738
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondria of brown fat: oxidative phosphorylation sensitive to 2,4,-dinitrophenol.
    Joel CD; Neaves WB; Rabb JM
    Biochem Biophys Res Commun; 1967 Nov; 29(4):490-5. PubMed ID: 16496524
    [No Abstract]   [Full Text] [Related]  

  • 8. Control of fatty-acid oxidation in brown-adipose-tissue mitochondria.
    Cannon B
    Eur J Biochem; 1971 Nov; 23(1):125-35. PubMed ID: 5127377
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling.
    Hanstein WG; Hatefi Y
    J Biol Chem; 1974 Mar; 249(5):1356-62. PubMed ID: 4817750
    [No Abstract]   [Full Text] [Related]  

  • 10. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.
    Shabalina IG; Kramarova TV; Nedergaard J; Cannon B
    Biochem J; 2006 Nov; 399(3):405-14. PubMed ID: 16831128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation. The specific binding of trimethyltin and triethyltin to rat liver mitochondria.
    Aldridge WN; Street BW
    Biochem J; 1970 Jun; 118(1):171-9. PubMed ID: 5472149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mitochondrial components of hamster brown adipose tissue in response to cold acclimation.
    Yacoe ME
    Biochem J; 1981 Feb; 194(2):653-6. PubMed ID: 6458282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stoichiometry and site specificity of the uncoupling of mitochondrial oxidative phosphorylation by salicylanilide derivatives.
    Wilson DF
    Biochemistry; 1969 Jun; 8(6):2475-81. PubMed ID: 4307995
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of mitochondrial respiration by uncouplers of oxidative phosphorylation.
    Wilson DF; Merz RD
    Arch Biochem Biophys; 1967 Mar; 119(1):470-6. PubMed ID: 4167702
    [No Abstract]   [Full Text] [Related]  

  • 15. Hamster brown-adipose-tissue mitochondria. The role of fatty acids in the control of the proton conductance of the inner membrane.
    Heaton GM; Nicholis DG
    Eur J Biochem; 1976 Aug; 67(2):511-7. PubMed ID: 964256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometric aspects of uncoupling of oxidative phosphorylation by a salicylanilide derivative.
    Kaplay M; Kurup CK; Lam KW; Sanadi DR
    Biochemistry; 1970 Sep; 9(18):3599-604. PubMed ID: 4324093
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of a specific endogenous fatty acid fraction in the coupling-uncoupling mechanism of oxidative phosphorylation of brown adipose tissue.
    Bulychev A; Kramar R; Drahota Z; Lindberg O
    Exp Cell Res; 1972 May; 72(1):169-87. PubMed ID: 4260232
    [No Abstract]   [Full Text] [Related]  

  • 18. Partial protection against erucoyl-carnitine inhibition in hamster brown-adipose-tissue mitochondria is due to high CoA levels: a comparison with rat brown-adipose-tissue mitochondria.
    Alexson S; Nedergaard J; Cannon B
    Comp Biochem Physiol B; 1986; 83(1):191-6. PubMed ID: 3943304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy conservation and uncoupling in mitochondria.
    Hatefi Y
    J Supramol Struct; 1975; 3(3):201-13. PubMed ID: 1102805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.
    Cunarro J; Weiner MW
    Biochim Biophys Acta; 1975 May; 387(2):234-40. PubMed ID: 1125290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.