BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8430791)

  • 21. Differential effects of the 3',5'-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin.
    Su Y; Chakraborty M; Nathanson MH; Baron R
    Endocrinology; 1992 Sep; 131(3):1497-502. PubMed ID: 1324163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones.
    Chambers TJ; McSheehy PM; Thomson BM; Fuller K
    Endocrinology; 1985 Jan; 116(1):234-9. PubMed ID: 3880540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platelet-activating factor stimulates multiple signaling pathways in cultured rat mesangial cells.
    Kester M; Thomas CP; Wang J; Dunn MJ
    J Cell Physiol; 1992 Nov; 153(2):244-55. PubMed ID: 1331121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular nucleotides act through P2X7 receptors to activate NF-kappaB in osteoclasts.
    Korcok J; Raimundo LN; Ke HZ; Sims SM; Dixon SJ
    J Bone Miner Res; 2004 Apr; 19(4):642-51. PubMed ID: 15005852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of a sodium/calcium exchanger, NCX-1, in osteoclasts and its role in bone resorption.
    Moonga BS; Davidson R; Sun L; Adebanjo OA; Moser J; Abedin M; Zaidi N; Huang CL; Zaidi M
    Biochem Biophys Res Commun; 2001 May; 283(4):770-5. PubMed ID: 11350050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption.
    Zaidi M; Moonga BS; Huang CL
    Biol Rev Camb Philos Soc; 2004 Feb; 79(1):79-100. PubMed ID: 15005174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of bone resorption and osteoclast survival by nitric oxide: possible involvement of NMDA-receptor.
    Mentaverri R; Kamel S; Wattel A; Prouillet C; Sevenet N; Petit JP; Tordjmann T; Brazier M
    J Cell Biochem; 2003 Apr; 88(6):1145-56. PubMed ID: 12647297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. S 12911-2 inhibits osteoclastic bone resorption in vitro.
    Takahashi N; Sasaki T; Tsouderos Y; Suda T
    J Bone Miner Res; 2003 Jun; 18(6):1082-7. PubMed ID: 12817762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of sodium fluoride on the resorptive activity of isolated osteoclasts.
    Okuda A; Kanehisa J; Heersche JN
    J Bone Miner Res; 1990 Mar; 5 Suppl 1():S115-20. PubMed ID: 2339620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of platelet-activating factor receptors on canine T lymphocytes.
    Mangino MJ; Murphy MK; Weiss A; Anderson CB
    J Immunol; 1993 Nov; 151(10):5310-8. PubMed ID: 8228226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A reappraisal of the effect of extracellular calcium on osteoclastic bone resorption.
    Hall TJ
    Biochem Biophys Res Commun; 1994 Jul; 202(1):456-62. PubMed ID: 8037747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH on bone resorption by rat osteoclasts in vitro.
    Arnett TR; Dempster DW
    Endocrinology; 1986 Jul; 119(1):119-24. PubMed ID: 3720660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct and indirect actions of fibroblast growth factor 2 on osteoclastic bone resorption in cultures.
    Kawaguchi H; Chikazu D; Nakamura K; Kumegawa M; Hakeda Y
    J Bone Miner Res; 2000 Mar; 15(3):466-73. PubMed ID: 10750561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium.
    Berger CE; Rathod H; Gillespie JI; Horrocks BR; Datta HK
    J Bone Miner Res; 2001 Nov; 16(11):2092-102. PubMed ID: 11697806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts.
    Komarova SV; Pereverzev A; Shum JW; Sims SM; Dixon SJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2643-8. PubMed ID: 15695591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An osteoclastic protein-tyrosine phosphatase is a potential positive regulator of the c-Src protein-tyrosine kinase activity: a mediator of osteoclast activity.
    Lau KH; Wu LW; Sheng MH; Amoui M; Suhr SM; Baylink DJ
    J Cell Biochem; 2006 Apr; 97(5):940-55. PubMed ID: 16267838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resorption of bone by isolated rabbit osteoclasts.
    Chambers TJ; Revell PA; Fuller K; Athanasou NA
    J Cell Sci; 1984 Mar; 66():383-99. PubMed ID: 6746762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin.
    Malgaroli A; Meldolesi J; Zallone AZ; Teti A
    J Biol Chem; 1989 Aug; 264(24):14342-7. PubMed ID: 2547794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of platelet-activating factor (PAF) on cytosolic free calcium in human peripheral blood mononuclear leukocytes.
    Ng DS; Wong K
    Res Commun Chem Pathol Pharmacol; 1989 May; 64(2):351-4. PubMed ID: 2740622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlates of osteoclast function in the presence of perchlorate ions in the rat.
    Moonga BS; Datta HK; Bevis PJ; Huang CL; MacIntyre I; Zaidi M
    Exp Physiol; 1991 Nov; 76(6):923-33. PubMed ID: 1662966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.