These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8430829)

  • 1. Effect of captopril on fluctuations of blood pressure and renal blood flow in rats.
    He J; Marsh DJ
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F37-44. PubMed ID: 8430829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Threshold sodium excretory and renal blood flow effects of angiotensin converting enzyme inhibition.
    Zhang X; Dunham EW; Zimmerman BG
    J Hypertens; 1995 Dec; 13(12 Pt 1):1413-19. PubMed ID: 8866903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats.
    Chen YM; Holstein-Rathlou NH
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F166-74. PubMed ID: 8430827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog.
    Just A; Ehmke H; Wittmann U; Kirchheim HR
    J Physiol; 2002 Jan; 538(Pt 1):167-77. PubMed ID: 11773325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resetting of the pressure range for blood flow autoregulation in the rat kidney.
    Holm L; Morsing P; Casellas D; Persson AE
    Acta Physiol Scand; 1990 Mar; 138(3):395-401. PubMed ID: 2327265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubuloglomerular feedback and blood flow autoregulation during DA1-induced renal vasodilation.
    Pollock DM; Arendshorst WJ
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F627-35. PubMed ID: 1969238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole kidney response to reduced arterial pressure during converting enzyme inhibition in the rat.
    Göransson A; Isaksson B; Sjöquist M
    Ren Physiol; 1986; 9(5):287-301. PubMed ID: 3544107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin converting enzyme inhibition and autoregulation of glomerular filtration.
    Plante GE; Chainey A; Sirois P; Devissaguet M
    J Hypertens Suppl; 1988 Dec; 6(3):S69-73. PubMed ID: 3066878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sympathetic modulation of renal blood flow by rilmenidine and captopril: central vs. peripheral effects.
    Janssen BJ; Lukoshkova EV; Head GA
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F113-23. PubMed ID: 11739119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II Type 1 Receptor Antagonism Attenuates Abnormalities in Dynamic Renal Blood Flow Autoregulation in Rats with Endotoxin-Induced Acute Kidney Injury.
    Nitescu N; DiBona GF; Grimberg E; Guron G
    Kidney Blood Press Res; 2010; 33(3):200-8. PubMed ID: 20588056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the efficacy of linear system analysis of renal autoregulation in rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marsh DJ; Marmarelis VZ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):8-20. PubMed ID: 8468079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II.
    Cupples WA; Marsh DJ
    Can J Physiol Pharmacol; 1988 Jun; 66(6):833-6. PubMed ID: 3048619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of kinins and angiotensin II in the renal hemodynamic response to captopril.
    Mattson DL; Roman RJ
    Am J Physiol; 1991 May; 260(5 Pt 2):F670-9. PubMed ID: 2035654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal autoregulation: models combining tubuloglomerular feedback and myogenic response.
    Aukland K; Oien AH
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F768-83. PubMed ID: 3565585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency domain of renal autoregulation in the conscious dog.
    Wittmann U; Nafz B; Ehmke H; Kirchheim HR; Persson PB
    Am J Physiol; 1995 Sep; 269(3 Pt 2):F317-22. PubMed ID: 7573479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of renin-angiotensin system in the reduced pressure natriuresis response of hyperthyroid rats.
    García-Estañ J; Atucha NM; Quesada T; Vargas F
    Am J Physiol; 1995 May; 268(5 Pt 1):E897-901. PubMed ID: 7762643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.