These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8430969)

  • 61. Calculation of ventilation threshold using noncontact respirometry.
    Aoki H; Ichimura S; Kiyooka S; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2273-6. PubMed ID: 19163153
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Voice, breathing, and the control of exercise intensity.
    Goode RC; Mertens R; Shaiman S; Mertens J
    Adv Exp Med Biol; 1998; 450():223-9. PubMed ID: 10026988
    [No Abstract]   [Full Text] [Related]  

  • 63. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    MacRae HS; Dennis SC
    J Appl Physiol (1985); 1995 Feb; 78(2):758-60. PubMed ID: 7759452
    [No Abstract]   [Full Text] [Related]  

  • 64. Arterial blood acidity and control of breathing during exercise.
    Haouzi P
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):173-4. PubMed ID: 22178547
    [No Abstract]   [Full Text] [Related]  

  • 65. Ventilatory response to muscular exercise in patients with cardiac dyspnea.
    FODSTAD DO
    Scand J Clin Lab Invest; 1956; 8(2):104-7. PubMed ID: 13351542
    [No Abstract]   [Full Text] [Related]  

  • 66. The HEART of the matter: the integration of respiratory mechanics, exertional dyspnoea and exercise intensity.
    Yates BA
    J Physiol; 2019 Jun; 597(11):2839-2840. PubMed ID: 31026333
    [No Abstract]   [Full Text] [Related]  

  • 67. Oxygen delivery and lactic acidosis.
    Benjamin E; Iberti TJ
    Crit Care Med; 1989 Mar; 17(3):299. PubMed ID: 2920567
    [No Abstract]   [Full Text] [Related]  

  • 68. Digital filtering aids data processing for exercise test protocols for haemodynamically compromised subjects.
    Bates GT; Hamilton EJ; Stewart DE; Bates RH
    Australas Phys Eng Sci Med; 1986; 9(2):67-76. PubMed ID: 3778364
    [No Abstract]   [Full Text] [Related]  

  • 69. Uniqueness of optimal controllers during exercise.
    Yamashiro SM
    Ann Biomed Eng; 1993; 21(5):531-5. PubMed ID: 8239093
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Respiratory function in subjects with lung disease and in subjects with heart disease under constantly increasing work. I. Findings with respiration of normal air].
    CASTELFRANCO M; GHIRINGHELLI G; MORRA G
    Folia Cardiol; 1956 Feb; 15(1):3-34. PubMed ID: 13318064
    [No Abstract]   [Full Text] [Related]  

  • 71. Defining the hypoxic threshold.
    Jorge M; Giniger R
    Crit Care Med; 1992 Jan; 20(1):153-4. PubMed ID: 1729036
    [No Abstract]   [Full Text] [Related]  

  • 72. Evolving paradigms in H+ control of breathing: from homeostatic regulation to homeostatic competition.
    Poon CS
    Respir Physiol Neurobiol; 2011 Dec; 179(2-3):122-6. PubMed ID: 21864724
    [No Abstract]   [Full Text] [Related]  

  • 73. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale.
    Goldman L; Hashimoto B; Cook EF; Loscalzo A
    Circulation; 1981 Dec; 64(6):1227-34. PubMed ID: 7296795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exercise testing and disease risk: individualized medicine without the "omics"?
    Joyner MJ
    J Appl Physiol (1985); 2011 Dec; 111(6):1539. PubMed ID: 21940848
    [No Abstract]   [Full Text] [Related]  

  • 75. [The ergometer for the quantitative loading and its practical application].
    Saito S; Inagaki Y; Usami M; Yaguchi T
    Nihon Naika Gakkai Zasshi; 1967 May; 56(5):421-31. PubMed ID: 5624476
    [No Abstract]   [Full Text] [Related]  

  • 76. LACTIC ACID PRODUCTION DURING REST AND AFTER EXERCISE IN SUBJECTS WITH VARIOUS TYPES OF HEART DISEASE WITH SPECIAL REFERENCE TO CONGENITAL HEART DISEASE.
    Hallock P
    J Clin Invest; 1939 Jul; 18(4):385-94. PubMed ID: 16694672
    [No Abstract]   [Full Text] [Related]  

  • 77. The Effect of Carotid Chemoreceptor Inhibition on Exercise Tolerance in Chronic Heart Failure.
    Collins SÉ; Phillips DB; McMurtry MS; Bryan TL; Paterson DI; Wong E; Ezekowitz JA; Forhan MA; Stickland MK
    Front Physiol; 2020; 11():195. PubMed ID: 32226392
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Overshoot phenomenon of oxygen uptake during recovery from maximal exercise in patients with previous myocardial infarction.
    Nagayama O; Koike A; Suzuki T; Hoshimoto-Iwamoto M; Sawada H; Aizawa T
    J Physiol Sci; 2010 Mar; 60(2):137-42. PubMed ID: 20037751
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exercise for patients with congestive heart failure.
    Shephard RJ
    Sports Med; 1997 Feb; 23(2):75-92. PubMed ID: 9068093
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of exercise ventilation in the limitation of functional capacity in patients with congestive heart failure.
    Metra M; Dei Cas L
    Basic Res Cardiol; 1996; 91 Suppl 1():31-6. PubMed ID: 8896741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.