These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8431326)

  • 1. Extra inspiratory work of breathing imposed by cricothyrotomy devices.
    Ooi R; Fawcett WJ; Soni N; Riley B
    Br J Anaesth; 1993 Jan; 70(1):17-21. PubMed ID: 8431326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efficacy of spontaneous and controlled ventilation with various cricothyrotomy devices: a quantitative in vitro assessment in a model lung.
    Michalek-Sauberer A; Granegger M; Gilly H
    J Trauma; 2011 Oct; 71(4):886-92. PubMed ID: 21399543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of inner tube placement on resistance and work of breathing through tracheostomy tubes: a bench test.
    Carter A; Fletcher SJ; Tuffin R
    Anaesthesia; 2013 Mar; 68(3):276-82. PubMed ID: 23278349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inner cannula removal on the work of breathing imposed by tracheostomy tubes: a bench study.
    Cowan T; Op't Holt TB; Gegenheimer C; Izenberg S; Kulkarni P
    Respir Care; 2001 May; 46(5):460-5. PubMed ID: 11309185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How design characteristics of tracheostomy tubes affect the cannula and tracheal flows.
    Subramaniam DR; Willging JP; Gutmark EJ; Oren L
    Laryngoscope; 2019 Aug; 129(8):1791-1799. PubMed ID: 30325519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airway resistance and work of breathing in tracheostomy tubes.
    Mullins JB; Templer JW; Kong J; Davis WE; Hinson J
    Laryngoscope; 1993 Dec; 103(12):1367-72. PubMed ID: 8246657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work of breathing for cuffed and uncuffed pediatric endotracheal tubes in an in vitro lung model setting.
    Thomas J; Weiss M; Cannizzaro V; Both CP; Schmidt AR
    Paediatr Anaesth; 2018 Sep; 28(9):780-787. PubMed ID: 30004614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different methods of ventilation via cannula cricothyroidotomy in a trachea-lung model.
    Flint NJ; Russell WC; Thompson JP
    Br J Anaesth; 2009 Dec; 103(6):891-5. PubMed ID: 19797248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.
    Pryor LN; Baldwin CE; Ward EC; Cornwell PL; O'Connor SN; Chapman MJ; Bersten AD
    Respir Care; 2016 May; 61(5):607-14. PubMed ID: 26860399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilator-CPAP with the Siemens Servo 900C compared with continuous flow-CPAP in intubated patients: effect on work of breathing.
    Aerts JG; van den Berg B; Bogaard JM
    Anaesth Intensive Care; 1997 Oct; 25(5):487-92. PubMed ID: 9352760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inspiratory work of breathing in ventilated preterm infants.
    Lorino H; Moriette G; Mariette C; Lorino AM; Harf A; Jarreau PH
    Pediatr Pulmonol; 1996 May; 21(5):323-7. PubMed ID: 8726158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of pressure support in compensating for apparatus work.
    Bersten AD; Rutten AJ; Vedig AE
    Anaesth Intensive Care; 1993 Feb; 21(1):67-71. PubMed ID: 8447610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect on work of breathing of different continuous positive airway pressure devices evaluated in a premature neonatal lung model.
    Nikischin W; Petridis M; Noeske J; Spengler D; von Bismarck P
    Pediatr Crit Care Med; 2011 Nov; 12(6):e376-82. PubMed ID: 21499172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of inspiratory and expiratory times to upper airway resistance during pulsatile needle cricothyrotomy ventilation with generic delivery circuit.
    Lim MW; Benham SW
    Br J Anaesth; 2010 Jan; 104(1):98-107. PubMed ID: 20007795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breathing by double-lung recipients during exercise: response to expiratory threshold loading.
    Pellegrino R; Rodarte JR; Frost AE; Reid MB
    Am J Respir Crit Care Med; 1998 Jan; 157(1):106-10. PubMed ID: 9445286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of tidal volume demand on work of breathing during simulated lung-protective ventilation.
    Kallet RH; Alonso JA; Diaz M; Campbell AR; Mackersie RC; Katz JA
    Respir Care; 2002 Aug; 47(8):898-909. PubMed ID: 12162801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential inadequacy of automatic tube compensation to decrease inspiratory work load after at least 48 hours of endotracheal tube use in the clinical setting.
    Oto J; Imanaka H; Nakataki E; Ono R; Nishimura M
    Respir Care; 2012 May; 57(5):697-703. PubMed ID: 22153219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The additional work of breathing imposed by Mapleson A systems.
    Ooi R; Pattison J; Soni N
    Anaesthesia; 1993 Jul; 48(7):599-603. PubMed ID: 8346776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pediatric respiratory monitor that accurately measures imposed work of breathing: a validation study.
    Berman LS; Banner MJ; Blanch PB; Widner LR
    J Clin Monit; 1995 Jan; 11(1):14-7. PubMed ID: 7745447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation.
    MacIntyre NR; Leatherman NE
    Am Rev Respir Dis; 1990 Feb; 141(2):327-31. PubMed ID: 2405758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.