These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 843135)

  • 1. Respiratory characteristics of a microporous membrane oxygenator.
    Karlson KE; Massimino RJ; Cooper GN; Singh AK; Vargas LL
    Ann Surg; 1977 Apr; 185(4):397-401. PubMed ID: 843135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of the interpulse low resistance microporous membrane oxygenator.
    Karlson KE; Massimino RJ; Singh AK; Cooper GN
    J Cardiovasc Surg (Torino); 1983; 24(2):156-9. PubMed ID: 6841439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial clinical experience with a low pressure drop membrane oxygenator for cardiopulmonary bypass in adult patients.
    Karlson KE; Massimino RM; Cooper GN; Singh AK
    Am J Surg; 1984 Apr; 147(4):447-50. PubMed ID: 6424487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial clinical experience with a more efficient hollow fiber oxygenator of unique design.
    Karlson KE; Massimino R; Singh AK; Cooper GN; Moran JM
    J Cardiovasc Surg (Torino); 1987; 28(4):384-7. PubMed ID: 3597531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical evaluation of a microporous membrane oxygenator.
    Karlson KE; Vargas LL; Cooper GN; Anthony PM; Massimino RJ
    J Cardiovasc Surg (Torino); 1977; 18(1):71-5. PubMed ID: 833194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the spinning disc to the membrane oxygenator for open-heart surgery.
    Björk VO; Sternlieb JJ; Davenport C
    Scand J Thorac Cardiovasc Surg; 1985; 19(3):207-16. PubMed ID: 3936170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The behavior of arterial and mixed venous oxygen and carbon dioxide partial pressure and the pH value during and following intubation apnoea. Studies on the occurrence of the Christiansen-Douglas-Haldane effect].
    Merkelbach D; Brandt L; Mertzlufft F
    Anaesthesist; 1993 Oct; 42(10):691-701. PubMed ID: 8250203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinical evaluation of the gas transfer characteristics and gaseous microemboli production of two bubble oxygenators.
    Pearson DT; Holden MP; Poslad SJ; Murray A; Waterhouse PS
    Life Support Syst; 1984; 2(4):252-66. PubMed ID: 6441873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling lung and tissue diffusion using a membrane oxygenator circuit.
    Dunningham H; Borland C; Bottrill F; Gordon D; Vuylsteke A
    Perfusion; 2007 Jul; 22(4):231-8. PubMed ID: 18181510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative gas transfer of an intravascular oxygenator.
    Tönz M; von Segesser LK; Leskosek B; Turina MI
    Ann Thorac Surg; 1994 Jan; 57(1):146-50. PubMed ID: 8279881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.
    Henriksen L
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):366-78. PubMed ID: 3086331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and clinical application of a new membrane oxygenator using a microporous polysulfone membrane.
    Dohi T; Hamada E; Murakami T; Nawa S; Komoto Y; Teramoto S; Kanbayashi T
    Trans Am Soc Artif Intern Organs; 1982; 28():338-41. PubMed ID: 7164260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxygenator type and bypass flow pattern on the P(a-ET)CO2 gradient.
    Opper SE; Fibuch EE; Nelson RE; Lonergan JH
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):46-50. PubMed ID: 1543853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator.
    Hamilton C; Marin D; Weinbrenner F; Engelhardt B; Rosenzweig D; Beck U; Borisov P; Hohe S
    Perfusion; 2017 Mar; 32(2):133-140. PubMed ID: 27600701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of cerebral oxymetry for assessing cerebral arteriolar carbon dioxide reactivity during cardiopulmonary bypass.
    Ariturk C; Okten M; Ozgen ZS; Erkek E; Uysal P; Gullu U; Senay S; Karabulut H; Alhan C; Toraman F
    Heart Surg Forum; 2014 Jun; 17(3):E169-72. PubMed ID: 25002395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of the microporous hollow fiber oxygenator.
    Makuuchi H; Mizuno A; Furuse A; Sudo K; Takayama T; Kotsuka Y; Takahama T; Asano K
    Jpn J Surg; 1984 Sep; 14(5):387-93. PubMed ID: 6439928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stragegies to reduce surface area requirements for carbon dioxide removal for an intravenacaval gas exchange device.
    Tao W; Bidani A; Cardenas VJ; Niranjan SC; Zwischenberger JB
    ASAIO J; 1995; 41(3):M567-72. PubMed ID: 8573869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass.
    Graham JM; Gibbs NM; Weightman WM; Sheminant MR
    Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.