These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 8431455)
1. Peptide hormone-membrane interactions. Intervesicular transfer of lipophilic gastrin derivatives to artificial membranes and their bioactivities. Romano R; Dufresne M; Prost MC; Bali JP; Bayerl TM; Moroder L Biochim Biophys Acta; 1993 Feb; 1145(2):235-42. PubMed ID: 8431455 [TBL] [Abstract][Full Text] [Related]
2. Peptide hormone-membrane interactions: the aggregational and conformational state of lipo-gastrin derivatives and their receptor binding affinity. Romano R; Musiol HJ; Weyher E; Dufresne M; Moroder L Biopolymers; 1992 Nov; 32(11):1545-58. PubMed ID: 1457731 [TBL] [Abstract][Full Text] [Related]
3. Lipophilic derivatization and its effect on the interaction of cholecystokinin (CCK) nonapeptide with phospholipids. Romano R; Bayerl TM; Moroder L Biochim Biophys Acta; 1993 Sep; 1151(2):111-9. PubMed ID: 8373785 [TBL] [Abstract][Full Text] [Related]
4. New evidence for a membrane-bound pathway in hormone receptor binding. Moroder L; Romano R; Guba W; Mierke DF; Kessler H; Delporte C; Winand J; Christophe J Biochemistry; 1993 Dec; 32(49):13551-9. PubMed ID: 7504952 [TBL] [Abstract][Full Text] [Related]
5. Metal ion binding affinities of gastrin and CCK in membrane mimetic environments. Lutz J; Weyher E; Moroder L J Pept Sci; 1995; 1(6):360-70. PubMed ID: 9223015 [TBL] [Abstract][Full Text] [Related]
6. Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling. Lutz J; Romano-Götsch R; Escrieut C; Fourmy D; Mathä B; Müller G; Kessler H; Moroder L Biopolymers; 1997 Jun; 41(7):799-817. PubMed ID: 9128441 [TBL] [Abstract][Full Text] [Related]
7. Effect of lipid on the conformation of the N-terminal region of equinatoxin II: a synchrotron radiation circular dichroism spectroscopic study. Drechsler A; Miles AJ; Norton RS; Wallace BA; Separovic F Eur Biophys J; 2009 Dec; 39(1):121-7. PubMed ID: 19343335 [TBL] [Abstract][Full Text] [Related]
8. Interaction of glucagon with artificial lipid bilayer membranes. Kimura S; Erne D; Schwyzer R Int J Pept Protein Res; 1992 May; 39(5):431-42. PubMed ID: 1358848 [TBL] [Abstract][Full Text] [Related]
9. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR. Byström T; Strandberg E; Kovacs FA; Cross TA; Lindblom G Biochim Biophys Acta; 2000 Dec; 1509(1-2):335-45. PubMed ID: 11118544 [TBL] [Abstract][Full Text] [Related]
10. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the interaction of amphipathic alpha-helical peptides with phosphatidylcholines. McLean LR; Hagaman KA Biochim Biophys Acta; 1993 Apr; 1167(3):289-95. PubMed ID: 8481390 [TBL] [Abstract][Full Text] [Related]
12. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
13. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
14. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
15. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence and CD studies on the conformation of the gastrin releasing peptide in solution and in the presence of model membranes. Cavatorta P; Sartor G; Neyroz P; Farruggia G; Franzoni L; Szabo AG; Spisni A Biopolymers; 1991 May; 31(6):653-61. PubMed ID: 1932564 [TBL] [Abstract][Full Text] [Related]
17. On the mechanism of hormone recognition and binding by the CCK-B/gastrin receptor. Moroder L J Pept Sci; 1997; 3(1):1-14. PubMed ID: 9230467 [TBL] [Abstract][Full Text] [Related]
18. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Gray C; Tatulian SA; Wharton SA; Tamm LK Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751 [TBL] [Abstract][Full Text] [Related]
19. Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study. Choucair A; Chakrapani M; Chakravarthy B; Katsaras J; Johnston LJ Biochim Biophys Acta; 2007 Jan; 1768(1):146-54. PubMed ID: 17052685 [TBL] [Abstract][Full Text] [Related]
20. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]