BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8431472)

  • 1. Thiamin-triphosphate-synthesizing activity of mutant cytosolic adenylate kinases: significance of Arg-128 for substrate specificity.
    Shioda T; Yasuda S; Yamada K; Yamada M; Nakazawa A; Kawasaki T
    Biochim Biophys Acta; 1993 Feb; 1161(2-3):230-4. PubMed ID: 8431472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of thiamin triphosphate-synthesizing activity of chicken cytosolic adenylate kinase and the effect of adenine nucleotides.
    Shioda T; Egi Y; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1991 Nov; 1115(1):30-5. PubMed ID: 1958702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of the thiamin triphosphate-synthesizing activity catalyzed by adenylate kinase (isoenzyme 1).
    Shikata H; Egi Y; Koyama S; Yamada K; Kawasaki T
    Biochem Int; 1989 May; 18(5):943-9. PubMed ID: 2551298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle.
    Miyoshi K; Egi Y; Shioda T; Kawasaki T
    J Biochem; 1990 Aug; 108(2):267-70. PubMed ID: 2229026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate.
    Shikata H; Koyama S; Egi Y; Yamada K; Kawasaki T
    Biochem Int; 1989 May; 18(5):933-41. PubMed ID: 2551297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and accumulation of thiamin triphosphate in Escherichia coli cells expressing chicken cytosolic adenylate kinase.
    Shioda T; Egi Y; Yamada K; Yamada M; Nakazawa A; Kawasaki T
    Biochim Biophys Acta; 1991 Nov; 1115(1):36-41. PubMed ID: 1958703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside-triphosphatase and hydrolysis of thiamin triphosphate in Escherichia coli.
    Nishimune T; Ito S; Abe M; Kimoto M; Hayashi R
    Biochim Biophys Acta; 1987 Jan; 923(1):74-82. PubMed ID: 3026493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiamin triphosphate synthesis in animals.
    Kawasaki T
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():383-6. PubMed ID: 1297771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, purification and reconstitution of thiamin metabolizing enzymes in human red blood cells.
    Egi Y; Koyama S; Shioda T; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1992 Nov; 1160(2):171-8. PubMed ID: 1332781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of leucine 66 in the asymmetric recognition of substrates in chicken muscle adenylate kinase.
    Okajima T; Tanizawa K; Yoneya T; Fukui T
    J Biol Chem; 1991 Jun; 266(18):11442-7. PubMed ID: 2050660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of AMP-binding residues in adenylate kinase. Alteration of substrate specificity.
    Okajima T; Tanizawa K; Fukui T
    FEBS Lett; 1993 Nov; 334(1):86-8. PubMed ID: 8224235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-AMP phosphotransferase from Paracoccus denitrificans.
    Yeh SS; Tomasselli AG; Noda LH
    Eur J Biochem; 1983 Nov; 136(3):523-9. PubMed ID: 6315432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme system involved in the synthesis of thiamin triphosphate. I. Purification and characterization of protein-bound thiamin diphosphate: ATP phosphoryltransferase.
    Nishino K; Itokawa Y; Nishino N; Piros K; Cooper JR
    J Biol Chem; 1983 Oct; 258(19):11871-8. PubMed ID: 6311826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and catalytic role of arginine 88 in Escherichia coli adenylate kinase as evidenced by chemical modification and site-directed mutagenesis.
    Reinstein J; Gilles AM; Rose T; Wittinghofer A; Saint Girons I; Bârzu O; Surewicz WK; Mantsch HH
    J Biol Chem; 1989 May; 264(14):8107-12. PubMed ID: 2542263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli.
    Gigliobianco T; Lakaye B; Makarchikov AF; Wins P; Bettendorff L
    BMC Microbiol; 2008 Jan; 8():16. PubMed ID: 18215312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of thiamine triphosphate in rat brain: correlation with chloride permeability.
    Bettendorff L; Peeters M; Wins P; Schoffeniels E
    J Neurochem; 1993 Feb; 60(2):423-34. PubMed ID: 8380431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.
    Makarchikov AF; Wins P; Janssen E; Wieringa B; Grisar T; Bettendorff L
    Biochim Biophys Acta; 2002 Oct; 1592(2):117-21. PubMed ID: 12379473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and purification of an adenylate kinase-associated protein that influences the thermolability of adenylate kinase from a temperature-sensitive adk mutant of Escherichia coli.
    Huss RJ; Glaser M
    J Biol Chem; 1983 Nov; 258(21):13370-6. PubMed ID: 6313692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.
    Bettendorff L; Lakaye B; Kohn G; Wins P
    Metab Brain Dis; 2014 Dec; 29(4):1069-82. PubMed ID: 24590690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple forms of adenylate kinase in pig brain.
    Okada H; Suzuki J
    Biochem Int; 1990; 21(4):677-84. PubMed ID: 2241994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.