These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8431544)

  • 1. Deriving the intermediate spectra and photocycle kinetics from time-resolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein.
    Zimányi L; Lanyi JK
    Biophys J; 1993 Jan; 64(1):240-51. PubMed ID: 8431544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements.
    Zimányi L; Cao Y; Chang M; Ni B; Needleman R; Lanyi JK
    Photochem Photobiol; 1992 Dec; 56(6):1049-55. PubMed ID: 1337212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing BR photocycle kinetics.
    Nagle JF; Zimanyi L; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1490-9. PubMed ID: 7787034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin: mechanism and evidence for two M species.
    Druckmann S; Friedman N; Lanyi JK; Needleman R; Ottolenghi M; Sheves M
    Photochem Photobiol; 1992; 56(6):1041-7. PubMed ID: 11538403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration.
    Váró G; Lanyi JK
    Biophys J; 1991 Feb; 59(2):313-22. PubMed ID: 2009355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of proton release in the bacteriorhodopsin photocycle.
    Zimányi L; Váró G; Chang M; Ni B; Needleman R; Lanyi JK
    Biochemistry; 1992 Sep; 31(36):8535-43. PubMed ID: 1327104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed.
    Zimányi L; Saltiel J; Brown LS; Lanyi JK
    J Phys Chem A; 2006 Feb; 110(7):2318-21. PubMed ID: 16480288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the crystalline structure of purple membrane on the kinetics and energetics of the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 Jul; 30(29):7165-71. PubMed ID: 1854728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved X-ray diffraction reveals movement of F helix of D96N bacteriorhodopsin during M-MN transition at neutral pH.
    Oka T; Yagi N; Tokunaga F; Kataoka M
    Biophys J; 2002 May; 82(5):2610-6. PubMed ID: 11964247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant.
    Delaney JK; Subramaniam S
    Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin.
    Drachev LA; Kaulen AD; Komrakov AYu
    Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore.
    Lanyi JK; Tittor J; Váró G; Krippahl G; Oesterhelt D
    Biochim Biophys Acta; 1992 Jan; 1099(1):102-10. PubMed ID: 1346749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin.
    Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK
    Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the M1-->M2 (M(closed) --> M(open)) transition in the D96N mutant photocycle and its relation to the corresponding transition in wild-type bacteriorhodopsin.
    Radionov AN; Kaulen AD
    FEBS Lett; 1997 Jun; 409(2):137-40. PubMed ID: 9202133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the proton-transporting photocycle of pharaonis halorhodopsin.
    Kulcsár A; Groma GI; Lanyi JK; Váró G
    Biophys J; 2000 Nov; 79(5):2705-13. PubMed ID: 11053142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle.
    Hendrickson FM; Burkard F; Glaeser RM
    Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: analysis of simulated data.
    Zimányi L; Kulcsár A; Lanyi JK; Sears DF; Saltiel J
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4408-13. PubMed ID: 10200275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.