These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8431548)

  • 1. A novel method for the observation of membrane transporter dynamics.
    Horn LW
    Biophys J; 1993 Jan; 64(1):281-9. PubMed ID: 8431548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-substrate single-file model for ion-coupled transporters.
    Su A; Mager S; Mayo SL; Lester HA
    Biophys J; 1996 Feb; 70(2):762-77. PubMed ID: 8789093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency and concentration windows for the electric activation of a membrane active transport system.
    Markin VS; Tsong TY
    Biophys J; 1991 Jun; 59(6):1308-16. PubMed ID: 1873467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast voltage clamp discloses a new component of presteady-state currents from the Na(+)-glucose cotransporter.
    Chen XZ; Coady MJ; Lapointe JY
    Biophys J; 1996 Nov; 71(5):2544-52. PubMed ID: 8913593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate on the pre-steady-state kinetics of the Na(+)/glucose cotransporter.
    Gagnon DG; Frindel C; Lapointe JY
    Biophys J; 2007 Jan; 92(2):461-72. PubMed ID: 17071656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular mechanism and potential dependence of the Na+/glucose cotransporter.
    Bennett E; Kimmich GA
    Biophys J; 1996 Apr; 70(4):1676-88. PubMed ID: 8785326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
    Virkki LV; Forster IC; Biber J; Murer H
    Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior.
    Nekolla S; Andersen C; Benz R
    Biophys J; 1994 May; 66(5):1388-97. PubMed ID: 7520291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the non-steady state electrogenic transport of sodium ions by Na+,K(+)-ATPase by the capacitance measurement method.
    Sokolov VS; Stukolov SM; Darmostuk AS; Apell HJ
    Membr Cell Biol; 1998; 11(5):653-78. PubMed ID: 9672883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A
    J Membr Biol; 2003 Mar; 192(2):89-100. PubMed ID: 12682797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
    Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B
    Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the conformational states of the rabbit Na+/glucose cotransporter.
    Krofchick D; Silverman M
    Biophys J; 2003 Jun; 84(6):3690-702. PubMed ID: 12770876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials.
    Sjodin RA
    Soc Gen Physiol Ser; 1984; 38():105-27. PubMed ID: 6320455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic models and phenomenological analysis of passive lipid translocation in single-file.
    Frickenhaus S; Heinrich R
    J Theor Biol; 1999 Mar; 197(2):175-91. PubMed ID: 10074392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
    Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY
    Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium.
    Gjedde A; Christensen O
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):241-9. PubMed ID: 6725434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.