These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8431650)

  • 1. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model.
    Franzone PC; Guerri L
    Math Biosci; 1993 Feb; 113(2):145-209. PubMed ID: 8431650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of the spreading of excitation in myocardial tissue.
    Franzone PC; Guerri L
    Crit Rev Biomed Eng; 1992; 20(3-4):211-53. PubMed ID: 1478092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry.
    Franzone PC; Guerri L; Pennacchio M; Taccardi B
    Math Biosci; 1998 Jan; 147(2):131-71. PubMed ID: 9433061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field.
    Franzone PC; Guerri L; Tentoni S
    Math Biosci; 1990 Oct; 101(2):155-235. PubMed ID: 2134484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations.
    Colli Franzone P; Guerri L; Rovida S
    J Math Biol; 1990; 28(2):121-76. PubMed ID: 2319210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. Effects of ventricular geometry and fiber structure on the potential distribution.
    Colli Franzone P; Guerri L; Pennacchio M; Taccardi B
    Math Biosci; 1998 Jul; 151(1):51-98. PubMed ID: 9664760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models.
    Jacquemet V
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2090-8. PubMed ID: 20515704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-way blocks in cardiac tissue: a mechanism for propagation failure in Purkinje fibres.
    Lewis MA; Grindrod P
    Bull Math Biol; 1991; 53(6):881-99. PubMed ID: 1958896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.
    Corrado C; Zemzemi N
    Med Image Anal; 2018 Jan; 43():186-197. PubMed ID: 29128759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current injection into a two-dimensional anisotropic bidomain.
    Sepulveda NG; Roth BJ; Wikswo JP
    Biophys J; 1989 May; 55(5):987-99. PubMed ID: 2720084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An eikonal-curvature equation for action potential propagation in myocardium.
    Keener JP
    J Math Biol; 1991; 29(7):629-51. PubMed ID: 1940663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of excitation in idealized anisotropic two-dimensional tissue.
    Barr RC; Plonsey R
    Biophys J; 1984 Jun; 45(6):1191-202. PubMed ID: 6547622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oblique dipole layer potentials applied to electrocardiology.
    Colli-Franzone P; Guerri L; Viganotti C
    J Math Biol; 1983; 17(1):93-124. PubMed ID: 6875409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities.
    Plonsey R; Barr RC
    Biophys J; 1984 Mar; 45(3):557-71. PubMed ID: 6713068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.