These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 8431989)

  • 1. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.
    Pertsov AM; Davidenko JM; Salomonsz R; Baxter WT; Jalife J
    Circ Res; 1993 Mar; 72(3):631-50. PubMed ID: 8431989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral wave activity: a possible common mechanism for polymorphic and monomorphic ventricular tachycardias.
    Davidenko JM
    J Cardiovasc Electrophysiol; 1993 Dec; 4(6):730-46. PubMed ID: 8305992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pacing on stationary reentrant activity. Theoretical and experimental study.
    Davidenko JM; Salomonsz R; Pertsov AM; Baxter WT; Jalife J
    Circ Res; 1995 Dec; 77(6):1166-79. PubMed ID: 7586230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart.
    Gray RA; Jalife J; Panfilov A; Baxter WT; Cabo C; Davidenko JM; Pertsov AM
    Circulation; 1995 May; 91(9):2454-69. PubMed ID: 7729033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationary and drifting spiral waves of excitation in isolated cardiac muscle.
    Davidenko JM; Pertsov AV; Salomonsz R; Baxter W; Jalife J
    Nature; 1992 Jan; 355(6358):349-51. PubMed ID: 1731248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for spontaneous changes in QRS morphology sometimes resembling torsades de pointes during reentrant ventricular tachycardia in a canine infarct model.
    Schmitt H; Cabo C; Costeas C; Coromilas J; Wit AL
    J Cardiovasc Electrophysiol; 2001 Jun; 12(6):686-94. PubMed ID: 11405403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues: evidence in support of a small reentrant circuit.
    Kamjoo K; Uchida T; Ikeda T; Fishbein MC; Garfinkel A; Weiss JN; Karagueuzian HS; Chen PS
    Circulation; 1997 Sep; 96(6):2048-60. PubMed ID: 9323098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of vortex-like reentry wave filaments in three-dimensional computer models.
    Ashihara T; Namba T; Ito M; Kinoshita M; Nakazawa K
    J Electrocardiol; 1999; 32 Suppl():129-38. PubMed ID: 10688316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of the response functions of spiral waves in active media.
    Biktasheva IV; Barkley D; Biktashev VN; Bordyugov GV; Foulkes AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056702. PubMed ID: 19518588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained vortex-like waves in normal isolated ventricular muscle.
    Davidenko JM; Kent PF; Chialvo DR; Michaels DC; Jalife J
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8785-9. PubMed ID: 2247448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for the pursuit of spiral waves in excitable media.
    Kremmydas GP; Bezerianos A; Bountis T
    Stud Health Technol Inform; 1997; 43 Pt B():576-80. PubMed ID: 10179731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of the reentrant cardiac arrhythmias in ischemic myocardium.
    Zhang H; Yang L; Jin YB; Zhang ZX; Huang YZ
    Chin J Physiol; 2005 Sep; 48(3):155-9. PubMed ID: 16304842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms in simulated torsade de pointes.
    Abildskov JA; Lux RL
    J Cardiovasc Electrophysiol; 1993 Oct; 4(5):547-60. PubMed ID: 8269321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiral wave attachment to millimeter-sized obstacles.
    Lim ZY; Maskara B; Aguel F; Emokpae R; Tung L
    Circulation; 2006 Nov; 114(20):2113-21. PubMed ID: 17088465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A logical state model of circus movement atrial flutter role of anatomic obstacles, anisotropic conduction and slow conduction zones on induction, sustenance, and overdrive paced modulation of reentrant circuits.
    Yang H; el-Sherif N; Isber N; Restivo M
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):537-48. PubMed ID: 7927373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of diastolic outward current deactivation kinetics on the induction of spiral waves.
    Kogan BY; Karplus WJ; Billett BS; Pang AT; Khan SS; Mandel WJ; Karagueuzian HS
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1688-93. PubMed ID: 1721159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.