These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 843201)

  • 1. Cervical orthoses effect on cervical spine motion: roentgenographic and goniometric method of study.
    Fisher SV; Bowar JF; Awad EA; Gullickson G
    Arch Phys Med Rehabil; 1977 Mar; 58(3):109-15. PubMed ID: 843201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of five cervical orthoses in restricting cervical motion. A comparison study.
    Askins V; Eismont FJ
    Spine (Phila Pa 1976); 1997 Jun; 22(11):1193-8. PubMed ID: 9201855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proper fitting of the cervical orthosis.
    Fisher SV
    Arch Phys Med Rehabil; 1978 Nov; 59(11):505-7. PubMed ID: 727937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cervical orthoses.
    Beavis A
    Prosthet Orthot Int; 1989 Apr; 13(1):6-13. PubMed ID: 2717386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and radiological evaluation of Vertebrace extrication collars.
    Solot JA; Winzelberg GG
    J Emerg Med; 1990; 8(1):79-83. PubMed ID: 2351802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of Adjustable Cervical Orthoses and Modular Cervical Thoracic Orthoses in Restricting Neck Motion: A Comparative In vivo Biomechanical Study.
    Gao F
    Spine (Phila Pa 1976); 2015 Oct; 40(19):E1046-51. PubMed ID: 26076435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effectiveness of various cervical orthoses. An in vivo comparison of the mechanical stability provided by several widely used models.
    Sandler AJ; Dvorak J; Humke T; Grob D; Daniels W
    Spine (Phila Pa 1976); 1996 Jul; 21(14):1624-9. PubMed ID: 8839463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do cervical collars and cervicothoracic orthoses effectively stabilize the injured cervical spine? A biomechanical investigation.
    Ivancic PC
    Spine (Phila Pa 1976); 2013 Jun; 38(13):E767-74. PubMed ID: 23486409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mastication causing segmental spinal motion in common cervical orthoses.
    Chin KR; Auerbach JD; Adams SB; Sodl JF; Riew KD
    Spine (Phila Pa 1976); 2006 Feb; 31(4):430-4. PubMed ID: 16481953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses.
    Bell KM; Frazier EC; Shively CM; Hartman RA; Ulibarri JC; Lee JY; Kang JD; Donaldson WF
    Spine J; 2009 Mar; 9(3):225-31. PubMed ID: 18504164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft and rigid collars provide similar restriction in cervical range of motion during fifteen activities of daily living.
    Miller CP; Bible JE; Jegede KA; Whang PG; Grauer JN
    Spine (Phila Pa 1976); 2010 Jun; 35(13):1271-8. PubMed ID: 20512025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the Nebraska collar, a new prototype cervical immobilization collar, with three standard models.
    Alberts LR; Mahoney CR; Neff JR
    J Orthop Trauma; 1998 Aug; 12(6):425-30. PubMed ID: 9715451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yale cervical orthosis: an evaluation of its effectiveness in restricting cervical motion in normal subjects and a comparison with other cervical orthoses.
    Johnson RM; Hart DL; Owen JR; Lerner E; Chapin W; Zeleznik R
    Phys Ther; 1978 Jul; 58(7):865-71. PubMed ID: 662928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of a SAM splint-molded cervical collar with a Philadelphia cervical collar.
    McGrath T; Murphy C
    Wilderness Environ Med; 2009; 20(2):166-8. PubMed ID: 19594206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of efficacy and 3D kinematic characteristics of cervical orthoses.
    Zhang S; Wortley M; Clowers K; Krusenklaus JH
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):264-9. PubMed ID: 15698698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for measurement of the occipital-cervical distance via the occiput-C4 distance.
    Tang C; Yang S; Liao YH; Tang Q; Ma F; Wang Q; Zhong J
    BMC Musculoskelet Disord; 2020 Jun; 21(1):385. PubMed ID: 32539760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cineradiography of the braced normal cervical spine. A comparative study of five commonly used cervical orthoses.
    Hartman JT; Palumbo F; Hill BJ
    Clin Orthop Relat Res; 1975; (109):97-102. PubMed ID: 1132211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D motion analysis study comparing the effectiveness of cervical spine orthoses at restricting spinal motion through physiological ranges.
    Evans NR; Hooper G; Edwards R; Whatling G; Sparkes V; Holt C; Ahuja S
    Eur Spine J; 2013 Mar; 22 Suppl 1(Suppl 1):S10-5. PubMed ID: 23288458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cervical sagittal range-of-motion analysis using three methods. Cervical range-of-motion device, 3space, and radiography.
    Ordway NR; Seymour R; Donelson RG; Hojnowski L; Lee E; Edwards WT
    Spine (Phila Pa 1976); 1997 Mar; 22(5):501-8. PubMed ID: 9076881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of orthoses on three-dimensional load-displacement properties of the cervical spine.
    Ivancic PC
    Eur Spine J; 2013 Jan; 22(1):169-77. PubMed ID: 23090094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.