These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 8432359)

  • 21. Carbenoxolone impairs LTP and blocks NMDA receptors in murine hippocampus.
    Chepkova AN; Sergeeva OA; Haas HL
    Neuropharmacology; 2008 Aug; 55(2):139-47. PubMed ID: 18555495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus.
    Oh-Nishi A; Saji M; Satoh SZ; Ogata M; Suzuki N
    Neuroscience; 2009 Mar; 159(1):127-35. PubMed ID: 19010396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors governing the potentiation of NMDA receptor-mediated responses in hippocampus.
    Muller D; Arai A; Lynch G
    Hippocampus; 1992 Jan; 2(1):29-38. PubMed ID: 1364046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Associative long-term potentiation in piriform cortex slices requires GABAA blockade.
    Kanter ED; Haberly LB
    J Neurosci; 1993 Jun; 13(6):2477-82. PubMed ID: 8099125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Input-specific long-term potentiation in the rat lateral amygdala of horizontal slices.
    Drephal C; Schubert M; Albrecht D
    Neurobiol Learn Mem; 2006 May; 85(3):272-82. PubMed ID: 16406707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic developmental lead exposure and hippocampal long-term potentiation: biphasic dose-response relationship.
    Gilbert ME; Mack CM; Lasley SM
    Neurotoxicology; 1999 Feb; 20(1):71-82. PubMed ID: 10091860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Further characteristics of long-term potentiation in piriform cortex.
    Jung MW; Larson J
    Synapse; 1994 Dec; 18(4):298-306. PubMed ID: 7886622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective enhancement of non-NMDA receptor-mediated responses following induction of long-term potentiation in entorhinal cortex.
    Yun SH; Huh K; Jung MW
    Synapse; 2000 Jan; 35(1):1-7. PubMed ID: 10579802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selegiline reduces N-methyl-D-aspartic acid induced perturbation of neurotransmission but it leaves NMDA receptor dependent long-term potentiation intact in the hippocampus.
    Niittykoski M; Haapalinna A; Sirviö J
    J Neural Transm (Vienna); 2003 Nov; 110(11):1225-40. PubMed ID: 14628188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity.
    Guilarte TR; Miceli RC; Jett DA
    Neurotoxicology; 1994; 15(3):459-66. PubMed ID: 7854579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xenon attenuates hippocampal long-term potentiation by diminishing synaptic and extrasynaptic N-methyl-D-aspartate receptor currents.
    Kratzer S; Mattusch C; Kochs E; Eder M; Haseneder R; Rammes G
    Anesthesiology; 2012 Mar; 116(3):673-82. PubMed ID: 22293720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of NMDA receptor channels to the expression of LTP in the hippocampal dentate gyrus.
    Wang Z; Song D; Berger TW
    Hippocampus; 2002; 12(5):680-8. PubMed ID: 12440582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effects of the peptide fragment D-NAPVSIPQ on ethanol inhibition of synaptic plasticity and NMDA receptors in rat hippocampus.
    Zhang TA; Hendricson AW; Wilkemeyer MF; Lippmann MJ; Charness ME; Morrisett RA
    Neuroscience; 2005; 134(2):583-93. PubMed ID: 15963648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity.
    Li R; Huang FS; Abbas AK; Wigström H
    BMC Neurosci; 2007 Jul; 8():55. PubMed ID: 17655746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A peculiar form of potentiation in mossy fiber synapses.
    Staubli U
    Epilepsy Res Suppl; 1992; 7():151-7. PubMed ID: 1334660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala.
    Yu SY; Wu DC; Liu L; Ge Y; Wang YT
    J Neurochem; 2008 Jul; 106(2):889-99. PubMed ID: 18466342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of endogenous peptides in the development of long-term posttetanic potentiation].
    Mokrushin AA
    Izv Akad Nauk Ser Biol; 2002; (1):74-87. PubMed ID: 12068443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular changes in glutamatergic synapses induced by Pb2+: association with deficits of LTP and spatial learning.
    Nihei MK; Guilarte TR
    Neurotoxicology; 2001 Oct; 22(5):635-43. PubMed ID: 11770885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lead inhibits Ca(2+)-stimulated nitric oxide synthase activity from rat cerebellum.
    Quinn MR; Harris CL
    Neurosci Lett; 1995 Aug; 196(1-2):65-8. PubMed ID: 7501259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of chronic lead ingestion by rats on glucose metabolism and acetylcholine synthesis in cerebral cortex slices.
    Sterling GH; O'Neill KJ; McCafferty MR; O'Neill JJ
    J Neurochem; 1982 Aug; 39(2):592-6. PubMed ID: 7086439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.