BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8432390)

  • 1. Actin is a major structural and functional element of the egg cortex of giant silkmoths during oogenesis.
    Watson CA; Sauman I; Berry SJ
    Dev Biol; 1993 Feb; 155(2):315-23. PubMed ID: 8432390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical cytoskeleton of giant moth eggs.
    Jarnot B; Watson C; Laffan E; Nichols L; Geysen J; Berry SJ
    Mol Reprod Dev; 1988; 1(1):35-48. PubMed ID: 2908442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic distribution of poly(A)-containing RNA in developing Necturus maculosus oocytes with reference to annulate lamellae.
    Ganion LR
    Anat Rec; 1991 Jun; 230(2):218-24. PubMed ID: 1714257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal organization of bee ovarian follicles during oogenesis.
    PatrĂ­cio K; da Cruz-Landim C; Machado-Santelli GM
    Micron; 2011 Jan; 42(1):55-9. PubMed ID: 20850979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological irregularities and features of resistance to apoptosis in the dcp-1/pita double mutated egg chambers during Drosophila oogenesis.
    Nezis IP; Stravopodis DJ; Papassideri IS; Stergiopoulos C; Margaritis LH
    Cell Motil Cytoskeleton; 2005 Jan; 60(1):14-23. PubMed ID: 15547953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes.
    Gard DL
    Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes.
    Kloc M; Wilk K; Vargas D; Shirato Y; Bilinski S; Etkin LD
    Development; 2005 Aug; 132(15):3445-57. PubMed ID: 16000384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfertilized sea urchin eggs contain a discrete cortical shell of actin that is subdivided into two organizational states.
    Spudich A; Wrenn JT; Wessells NK
    Cell Motil Cytoskeleton; 1988; 9(1):85-96. PubMed ID: 3356047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte.
    Meng XQ; Zheng KG; Yang Y; Jiang MX; Zhang YL; Sun QY; Li YL
    Reproduction; 2006 Dec; 132(6):859-67. PubMed ID: 17127746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different cytoskeletal organization in two maturation stages of Discoglossus pictus (Anura) oocytes: thickness and stability of actin microfilaments and tropomyosin immunolocalization.
    Campanella C; Chaponnier C; Quaglia L; Gualtieri R; Gabbiani G
    Mol Reprod Dev; 1990 Feb; 25(2):130-9. PubMed ID: 2178640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An actin infrastructure is associated with eukaryotic chromosomes: structural and functional significance.
    Sauman I; Berry SJ
    Eur J Cell Biol; 1994 Aug; 64(2):348-56. PubMed ID: 7529180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth.
    Riparbelli MG; Callaini G
    Cell Motil Cytoskeleton; 1995; 31(4):298-306. PubMed ID: 7553916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs.
    Connors SA; Kanatsu-Shinohara M; Schultz RM; Kopf GS
    Dev Biol; 1998 Aug; 200(1):103-15. PubMed ID: 9698460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in cytoskeletal actin content, F-actin distribution, and surface morphology during HL-60 cell volume regulation.
    Hallows KR; Law FY; Packman CH; Knauf PA
    J Cell Physiol; 1996 Apr; 167(1):60-71. PubMed ID: 8698841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organisation of the cytoskeleton during in vitro maturation of horse oocytes.
    Tremoleda JL; Schoevers EJ; Stout TA; Colenbrander B; Bevers MM
    Mol Reprod Dev; 2001 Oct; 60(2):260-9. PubMed ID: 11553927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis.
    Wong GK; Allen PG; Begg DA
    Cell Motil Cytoskeleton; 1997; 36(1):30-42. PubMed ID: 8986375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear actin filaments and their topological changes in frog oocytes.
    Parfenov VN; Davis DS; Pochukalina GN; Sample CE; Bugaeva EA; Murti KG
    Exp Cell Res; 1995 Apr; 217(2):385-94. PubMed ID: 7698240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.
    Shimizu T
    Dev Biol; 1997 Aug; 188(1):110-21. PubMed ID: 9245516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin cytoskeleton reorganization of the apoptotic nurse cells during the late developmental stages of oogenesis in Dacus oleae.
    Nezis IP; Stravopodis DJ; Papassideri I; Margaritis LH
    Cell Motil Cytoskeleton; 2001 Mar; 48(3):224-33. PubMed ID: 11223953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.