BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8432991)

  • 1. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds.
    Lander HM; Sehajpal P; Levine DM; Novogrodsky A
    J Immunol; 1993 Feb; 150(4):1509-16. PubMed ID: 8432991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of endothelin receptors by nitric oxide in cultured rat vascular smooth muscle cells.
    Redmond EM; Cahill PA; Hodges R; Zhang S; Sitzmann JV
    J Cell Physiol; 1996 Mar; 166(3):469-79. PubMed ID: 8600150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway.
    Bingisser RM; Tilbrook PA; Holt PG; Kees UR
    J Immunol; 1998 Jun; 160(12):5729-34. PubMed ID: 9637481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide signaling: a possible role for G proteins.
    Lander HM; Sehajpal PK; Novogrodsky A
    J Immunol; 1993 Dec; 151(12):7182-7. PubMed ID: 8258718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells.
    Aizawa T; Wei H; Miano JM; Abe J; Berk BC; Yan C
    Circ Res; 2003 Sep; 93(5):406-13. PubMed ID: 12919948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis.
    Hatano E; Bennett BL; Manning AM; Qian T; Lemasters JJ; Brenner DA
    Gastroenterology; 2001 Apr; 120(5):1251-62. PubMed ID: 11266388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of SHP-1, Kv.1.2, and cGMP in nitric oxide-induced ERK1/2 MAP kinase dephosphorylation in rat vascular smooth muscle cells.
    Palen DI; Belmadani S; Lucchesi PA; Matrougui K
    Cardiovasc Res; 2005 Nov; 68(2):268-77. PubMed ID: 15967421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and delayed p42/p44 mitogen-activated protein kinase activation by nitric oxide: the role of cyclic GMP and tyrosine phosphatase inhibition.
    Callsen D; Pfeilschifter J; Brüne B
    J Immunol; 1998 Nov; 161(9):4852-8. PubMed ID: 9794418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells.
    Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M
    J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide reduces bacterial superantigen-immune cell activation and consequent epithelial abnormalities.
    Rachlis A; Watson JL; Lu J; McKay DM
    J Leukoc Biol; 2002 Aug; 72(2):339-46. PubMed ID: 12149425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic adenosine monophosphate inhibits nitric oxide-induced apoptosis in human leukemic HL-60 cells.
    Jun CD; Pae HO; Yoo JC; Kwak HJ; Park RK; Chung HT
    Cell Immunol; 1998 Jan; 183(1):13-21. PubMed ID: 9578715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism.
    Nishio E; Fukushima K; Shiozaki M; Watanabe Y
    Biochem Biophys Res Commun; 1996 Apr; 221(1):163-8. PubMed ID: 8660329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide donors stimulate bile flow and glutathione disulfide excretion independent of guanosine 3',5'-cyclic [corrected] monophosphate in the isolated perfused rat liver.
    Trauner M; Nathanson MH; Mennone A; Rydberg SA; Boyer JL
    Hepatology; 1997 Feb; 25(2):263-9. PubMed ID: 9021932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphatase-dependent/tyrosine kinase-independent induction of nuclear factor-kappa B by tumor necrosis factor-alpha: effects on prostaglandin endoperoxide synthase-2 mRNA accumulation.
    Mahboubi K; Young W; Ferreri NR
    J Pharmacol Exp Ther; 1998 May; 285(2):862-8. PubMed ID: 9580637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cyclic guanylate monophosphate in nitric oxide-induced injury to rat small intestinal epithelial cells.
    Tepperman BL; Abrahamson TD; Soper BD
    J Pharmacol Exp Ther; 1998 Mar; 284(3):929-33. PubMed ID: 9495851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent increase in nitric oxide formation concurrent with vasodilation induced by sodium nitroprusside, 3-morpholinosydnonimine, and S-nitroso-N-acetylpenicillamine but not by glyceryl trinitrate.
    Marks GS; McLaughlin BE; Jimmo SL; Poklewska-Koziell M; Brien JF; Nakatsu K
    Drug Metab Dispos; 1995 Nov; 23(11):1248-52. PubMed ID: 8591726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-1beta regulates nitric oxide production and gamma-glutamyl transpeptidase activity in sertoli cells.
    Meroni SB; Suburo AM; Cigorraga SB
    J Androl; 2000; 21(6):855-61. PubMed ID: 11105912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP.
    Volk T; Mäding K; Hensel M; Kox WJ
    J Cell Physiol; 1997 Sep; 172(3):296-305. PubMed ID: 9284949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of tyrosine kinases in the regulation of nitric oxide synthesis in murine liver cells: modulation of NF-kappa B activity by tyrosine kinases.
    Lee BS; Kang HS; Pyun KH; Choi I
    Hepatology; 1997 Apr; 25(4):913-9. PubMed ID: 9096597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual actions of dephostatin on the nitric oxide/cGMP-signalling pathway in porcine iliac arteries.
    Persson AA; Gunnarsson P; Lindström E; Grenegård M
    Eur J Pharmacol; 2005 Oct; 521(1-3):124-32. PubMed ID: 16182278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.