These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 8433135)

  • 1. Movement-related inputs to intermediate cerebellum of the monkey.
    van Kan PL; Gibson AR; Houk JC
    J Neurophysiol; 1993 Jan; 69(1):74-94. PubMed ID: 8433135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Output organization of intermediate cerebellum of the monkey.
    van Kan PL; Houk JC; Gibson AR
    J Neurophysiol; 1993 Jan; 69(1):57-73. PubMed ID: 8433134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar feedback signals of a passive hand movement in the awake monkey.
    Bauswein E; Kolb FP; Rubia FJ
    Pflugers Arch; 1984 Nov; 402(3):292-9. PubMed ID: 6522240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural activity in the monkey anterior ventrolateral thalamus during trained, ballistic movements.
    Forlano LM; Horne MK; Butler EG; Finkelstein D
    J Neurophysiol; 1993 Dec; 70(6):2276-88. PubMed ID: 8120582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar responses to teleceptive stimuli in alert monkeys.
    Mortimer JA
    Brain Res; 1975 Jan; 83(3):369-90. PubMed ID: 163116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad directional tuning in spinal projections to the cerebellum.
    Bosco G; Poppele RE
    J Neurophysiol; 1993 Aug; 70(2):863-6. PubMed ID: 8410178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles.
    Frysinger RC; Bourbonnais D; Kalaska JF; Smith AM
    J Neurophysiol; 1984 Jan; 51(1):32-49. PubMed ID: 6693934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primate rubromotoneuronal cells: parametric relations and contribution to wrist movement.
    Mewes K; Cheney PD
    J Neurophysiol; 1994 Jul; 72(1):14-30. PubMed ID: 7965000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement.
    Butler EG; Horne MK; Hawkins NJ
    J Physiol; 1992 Jan; 445():25-48. PubMed ID: 1501135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition.
    Laurens J; Heiney SA; Kim G; Blazquez PM
    PLoS One; 2013; 8(12):e82239. PubMed ID: 24376524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat.
    Garwicz M; Ekerot CF
    J Physiol; 1994 Jan; 474(2):245-60. PubMed ID: 8006811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex.
    Heine SA; Highstein SM; Blazquez PM
    J Neurosci; 2010 Dec; 30(50):17004-14. PubMed ID: 21159970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex.
    Shinoda Y; Sugihara I; Wu HS; Sugiuchi Y
    Prog Brain Res; 2000; 124():173-86. PubMed ID: 10943124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat.
    Ekerot CF; Jörntell H; Garwicz M
    Exp Brain Res; 1995; 106(3):365-76. PubMed ID: 8983981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellar unit responses of the mossy fibre system to passive movements in the decerebrate cat. I. Responses to static parameters.
    Kolb FP; Rubia FJ; Bauswein E
    Exp Brain Res; 1987; 68(2):234-48. PubMed ID: 3691699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation.
    Noda H; Mikami A
    J Neurophysiol; 1986 Oct; 56(4):1129-46. PubMed ID: 3783233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.