These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8433351)
1. Substrate and inhibitor specificity of the lactate carrier of human neutrophils. Simchowitz L; Vogt SK J Membr Biol; 1993 Jan; 131(1):23-34. PubMed ID: 8433351 [TBL] [Abstract][Full Text] [Related]
2. Lactic acid secretion by human neutrophils. Evidence for an H+ + lactate- cotransport system. Simchowitz L; Textor JA J Gen Physiol; 1992 Aug; 100(2):341-67. PubMed ID: 1402785 [TBL] [Abstract][Full Text] [Related]
3. L-lactate transport in Ehrlich ascites-tumour cells. Spencer TL; Lehninger AL Biochem J; 1976 Feb; 154(2):405-14. PubMed ID: 7237 [TBL] [Abstract][Full Text] [Related]
4. Sulfate transport in human neutrophils. Simchowitz L; Davis AO J Gen Physiol; 1989 Jul; 94(1):95-124. PubMed ID: 2478661 [TBL] [Abstract][Full Text] [Related]
5. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Carpenter L; Halestrap AP Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):751-60. PubMed ID: 7818477 [TBL] [Abstract][Full Text] [Related]
6. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Roth DA; Brooks GA Arch Biochem Biophys; 1990 Jun; 279(2):377-85. PubMed ID: 2350184 [TBL] [Abstract][Full Text] [Related]
7. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. de Bruijne AW; Vreeburg H; van Steveninck J Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911 [TBL] [Abstract][Full Text] [Related]
9. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Roth DA; Brooks GA Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. Manning Fox JE; Meredith D; Halestrap AP J Physiol; 2000 Dec; 529 Pt 2(Pt 2):285-93. PubMed ID: 11101640 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Mann GE; Zlokovic BV; Yudilevich DL Biochim Biophys Acta; 1985 Oct; 819(2):241-8. PubMed ID: 4041458 [TBL] [Abstract][Full Text] [Related]
12. Lactate transport by cardiac sarcolemmal vesicles. Trosper TL; Philipson KD Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501 [TBL] [Abstract][Full Text] [Related]
13. Lactate transport by skeletal muscle sarcolemmal vesicles. McDermott JC; Bonen A Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242 [TBL] [Abstract][Full Text] [Related]
14. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Poole RC; Halestrap AP Am J Physiol; 1993 Apr; 264(4 Pt 1):C761-82. PubMed ID: 8476015 [TBL] [Abstract][Full Text] [Related]
15. Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Poole RC; Cranmer SL; Halestrap AP; Levi AJ Biochem J; 1990 Aug; 269(3):827-9. PubMed ID: 2390070 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. De Bruijne AW; Vreeburg H; Van Steveninck J Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216 [TBL] [Abstract][Full Text] [Related]
17. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055 [TBL] [Abstract][Full Text] [Related]
18. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Halestrap AP Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406 [TBL] [Abstract][Full Text] [Related]
19. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Cássio F; Leão C; van Uden N Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152 [TBL] [Abstract][Full Text] [Related]
20. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells. Wang X; Levi AJ; Halestrap AP Am J Physiol; 1996 Feb; 270(2 Pt 2):H476-84. PubMed ID: 8779821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]