BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8433364)

  • 21. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning.
    Thåström A; Bingham LM; Widom J
    J Mol Biol; 2004 May; 338(4):695-709. PubMed ID: 15099738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA stretching and extreme kinking in the nucleosome core.
    Ong MS; Richmond TJ; Davey CA
    J Mol Biol; 2007 May; 368(4):1067-74. PubMed ID: 17379244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein.
    Pusarla RH; Vinayachandran V; Bhargava P
    FEBS J; 2007 May; 274(9):2396-410. PubMed ID: 17419736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin reconstitution on small DNA rings. IV. DNA supercoiling and nucleosome sequence preference.
    Duband-Goulet I; Carot V; Ulyanov AV; Douc-Rasy S; Prunell A
    J Mol Biol; 1992 Apr; 224(4):981-1001. PubMed ID: 1314907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4.
    Peterson S; Danowit R; Wunsch A; Jackson V
    Biochemistry; 2007 Jul; 46(29):8634-46. PubMed ID: 17595058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence-dependent nucleosome positioning.
    Chung HR; Vingron M
    J Mol Biol; 2009 Mar; 386(5):1411-22. PubMed ID: 19070622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleosome positioning determinants.
    Fernandez AG; Anderson JN
    J Mol Biol; 2007 Aug; 371(3):649-68. PubMed ID: 17586522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA structural patterns and nucleosome positioning.
    Staffelbach H; Koller T; Burks C
    J Biomol Struct Dyn; 1994 Oct; 12(2):301-25. PubMed ID: 7702771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome positioning in the human c-Fos promoter analyzed by in vivo footprinting with psoralen and ionizing radiation.
    Komura J; Ono T
    Biochemistry; 2003 Dec; 42(51):15084-91. PubMed ID: 14690418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.
    Thakar A; Gupta P; Ishibashi T; Finn R; Silva-Moreno B; Uchiyama S; Fukui K; Tomschik M; Ausio J; Zlatanova J
    Biochemistry; 2009 Nov; 48(46):10852-7. PubMed ID: 19856965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of sequence variability in nucleosome core histone folds.
    Sullivan SA; Landsman D
    Proteins; 2003 Aug; 52(3):454-65. PubMed ID: 12866056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minor groove binding ligands alter the rotational positioning of DNA fragments on nucleosome core particles.
    Brown PM; Fox KR
    J Mol Biol; 1996 Oct; 262(5):671-85. PubMed ID: 8876646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is a small number of charge neutralizations sufficient to bend nucleosome core DNA onto its superhelical ramp?
    Manning GS
    J Am Chem Soc; 2003 Dec; 125(49):15087-92. PubMed ID: 14653743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA nanomechanics in the nucleosome.
    Becker NB; Everaers R
    Structure; 2009 Apr; 17(4):579-89. PubMed ID: 19368891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.
    Hamiche A; Kang JG; Dennis C; Xiao H; Wu C
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14316-21. PubMed ID: 11724935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleosome dynamics V. Ethidium bromide versus histone tails in modulating ethidium bromide-driven tetrasome chiral transition. A fluorescence study of tetrasomes on DNA minicircles.
    Sivolob A; Prunell A
    J Mol Biol; 2000 Jan; 295(1):41-53. PubMed ID: 10623507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-directed cleavage of DNA by a linker histone--Fe(II) EDTA conjugate: localization of a globular domain binding site within a nucleosome.
    Hayes JJ
    Biochemistry; 1996 Sep; 35(37):11931-7. PubMed ID: 8810896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A determining influence for CpG dinucleotides on nucleosome positioning in vitro.
    Davey CS; Pennings S; Reilly C; Meehan RR; Allan J
    Nucleic Acids Res; 2004; 32(14):4322-31. PubMed ID: 15310836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.