These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8433865)
1. Reversal of the adverse chronic effects of the unsaturated derivative of valproic acid--2-n-propyl-4-pentenoic acid--on ketogenesis and liver coenzyme A metabolism by a single injection of pantothenate, carnitine, and acetylcysteine in developing mice. Thurston JH; Hauhart RE Pediatr Res; 1993 Jan; 33(1):72-6. PubMed ID: 8433865 [TBL] [Abstract][Full Text] [Related]
2. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Thurston JH; Hauhart RE Pediatr Res; 1992 Apr; 31(4 Pt 1):419-23. PubMed ID: 1570210 [TBL] [Abstract][Full Text] [Related]
3. Metabolic activation of unsaturated derivatives of valproic acid. Identification of novel glutathione adducts formed through coenzyme A-dependent and -independent processes. Kassahun K; Hu P; Grillo MP; Davis MR; Jin L; Baillie TA Chem Biol Interact; 1994 Mar; 90(3):253-75. PubMed ID: 8168173 [TBL] [Abstract][Full Text] [Related]
4. A single therapeutic dose of valproate affects liver carbohydrate, fat, adenylate, amino acid, coenzyme A, and carnitine metabolism in infant mice: possible clinical significance. Thurston JH; Carroll JE; Hauhart RE; Schiro JA Life Sci; 1985 Apr; 36(17):1643-51. PubMed ID: 3921791 [TBL] [Abstract][Full Text] [Related]
5. Vitamin B5 and N-Acetylcysteine in Nonalcoholic Steatohepatitis: A Preclinical Study in a Dietary Mouse Model. Machado MV; Kruger L; Jewell ML; Michelotti GA; Pereira Tde A; Xie G; Moylan CA; Diehl AM Dig Dis Sci; 2016 Jan; 61(1):137-48. PubMed ID: 26403427 [TBL] [Abstract][Full Text] [Related]
6. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Brass EP; Beyerinck RA Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008 [TBL] [Abstract][Full Text] [Related]
7. Fluorinated analogues as mechanistic probes in valproic acid hepatotoxicity: hepatic microvesicular steatosis and glutathione status. Tang W; Borel AG; Fujimiya T; Abbott FS Chem Res Toxicol; 1995; 8(5):671-82. PubMed ID: 7548749 [TBL] [Abstract][Full Text] [Related]
8. Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats. Kibayashi M; Nagao M; Chiba S Pediatr Int; 1999 Feb; 41(1):52-60. PubMed ID: 10200137 [TBL] [Abstract][Full Text] [Related]
9. Effect of valproic acid on glycine conjugation of benzoic acid. Gregus Z; Fekete T; Varga F; Klaassen CD J Pharmacol Exp Ther; 1993 Dec; 267(3):1068-75. PubMed ID: 8263766 [TBL] [Abstract][Full Text] [Related]
10. Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases. Lieu YK; Hsu BY; Price WA; Corkey BE; Stanley CA Am J Physiol; 1997 Mar; 272(3 Pt 1):E359-66. PubMed ID: 9124539 [TBL] [Abstract][Full Text] [Related]
11. In vivo formation of the thiol conjugates of reactive metabolites of 4-ene VPA and its analog 4-pentenoic acid. Kassahun K; Abbott F Drug Metab Dispos; 1993; 21(6):1098-106. PubMed ID: 7905390 [TBL] [Abstract][Full Text] [Related]
12. Pyruvate uptake is inhibited by valproic acid and metabolites in mitochondrial membranes. Aires CC; Soveral G; Luís PB; ten Brink HJ; de Almeida IT; Duran M; Wanders RJ; Silva MF FEBS Lett; 2008 Oct; 582(23-24):3359-66. PubMed ID: 18775709 [TBL] [Abstract][Full Text] [Related]
13. Comparative transfer of valproic acid and of an active metabolite into brain and liver: possible pharmacological and toxicological consequences. Löscher W; Nau H Arch Int Pharmacodyn Ther; 1984 Aug; 270(2):192-202. PubMed ID: 6435554 [TBL] [Abstract][Full Text] [Related]
14. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Becker CM; Harris RA Arch Biochem Biophys; 1983 Jun; 223(2):381-92. PubMed ID: 6407400 [TBL] [Abstract][Full Text] [Related]
15. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Brass EP; Hoppel CL Biochem J; 1980 Sep; 190(3):495-504. PubMed ID: 7470064 [TBL] [Abstract][Full Text] [Related]
16. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Zhang YM; Chohnan S; Virga KG; Stevens RD; Ilkayeva OR; Wenner BR; Bain JR; Newgard CB; Lee RE; Rock CO; Jackowski S Chem Biol; 2007 Mar; 14(3):291-302. PubMed ID: 17379144 [TBL] [Abstract][Full Text] [Related]
18. Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Ratnakumari L; Qureshi IA; Butterworth RF Metabolism; 1993 Aug; 42(8):1039-46. PubMed ID: 8102193 [TBL] [Abstract][Full Text] [Related]
19. The effect of carnitine on ketogenesis in perfused livers from juvenile visceral steatosis mice with systemic carnitine deficiency. Nakajima T; Horiuchi M; Yamanaka H; Kizaki Z; Inoue F; Kodo N; Kinugasa A; Saheki T; Sawada T Pediatr Res; 1997 Jul; 42(1):108-13. PubMed ID: 9212045 [TBL] [Abstract][Full Text] [Related]
20. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. McGarry JD; Mannaerts GP; Foster DW J Clin Invest; 1977 Jul; 60(1):265-70. PubMed ID: 874089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]