These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 8433978)
1. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Khorana HG Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1166-71. PubMed ID: 8433978 [TBL] [Abstract][Full Text] [Related]
2. Signal transduction in two light-transducing systems: bacteriorhodopsin and mammalian rhodopsin. Khorana HG Nucleic Acids Symp Ser; 1993; (29):219. PubMed ID: 8247775 [No Abstract] [Full Text] [Related]
3. Hydrophobic amino acids in the retinal-binding pocket of bacteriorhodopsin. Greenhalgh DA; Farrens DL; Subramaniam S; Khorana HG J Biol Chem; 1993 Sep; 268(27):20305-11. PubMed ID: 8376389 [TBL] [Abstract][Full Text] [Related]
4. Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange. Geiser AH; Sievert MK; Guo LW; Grant JE; Krebs MP; Fotiadis D; Engel A; Ruoho AE Protein Sci; 2006 Jul; 15(7):1679-90. PubMed ID: 16815918 [TBL] [Abstract][Full Text] [Related]
5. Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin. Acharya S; Karnik SS J Biol Chem; 1996 Oct; 271(41):25406-11. PubMed ID: 8810308 [TBL] [Abstract][Full Text] [Related]
6. Detection and expression of a gene encoding a new bacteriorhodopsin from an extreme halophile strain HT (JCM 9743) which does not possess bacteriorhodopsin activity. Kamekura M; Seno Y; Tomioka H Extremophiles; 1998 Jan; 2(1):33-9. PubMed ID: 9676241 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneity of rhodopsin intermediate state interacting with transducin. Shichida Y; Tachibanaki S; Mizukami T; Imai H; Terakita A Methods Enzymol; 2000; 315():347-63. PubMed ID: 10736712 [No Abstract] [Full Text] [Related]
8. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation. Yang K; Farrens DL; Hubbell WL; Khorana HG Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181 [TBL] [Abstract][Full Text] [Related]
10. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation. Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958 [TBL] [Abstract][Full Text] [Related]
11. Conformations of the rhodopsin third cytoplasmic loop grafted onto bacteriorhodopsin. Heymann JB; Pfeiffer M; Hildebrandt V; Kaback HR; Fotiadis D; Groot B; Engel A; Oesterhelt D; Müller DJ Structure; 2000 Jun; 8(6):643-53. PubMed ID: 10873864 [TBL] [Abstract][Full Text] [Related]
12. Probing of the retinal binding site of bacteriorhodopsin by affinity labeling. Feng Y; Menick DR; Katz BM; Beischel CJ; Hazard ES; Misra S; Ebrey TG; Crouch RK Biochemistry; 1994 Sep; 33(38):11624-30. PubMed ID: 7918376 [TBL] [Abstract][Full Text] [Related]
13. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays. Ernst OP; Hofmann KP; Sakmar TP J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995 [TBL] [Abstract][Full Text] [Related]
14. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. Bratanov D; Balandin T; Round E; Shevchenko V; Gushchin I; Polovinkin V; Borshchevskiy V; Gordeliy V PLoS One; 2015; 10(6):e0128390. PubMed ID: 26046789 [TBL] [Abstract][Full Text] [Related]
15. Functional expression of His-tagged sensory rhodopsin I in Escherichia coli. Schmies G; Chizhov I; Engelhard M FEBS Lett; 2000 Jan; 466(1):67-9. PubMed ID: 10648814 [TBL] [Abstract][Full Text] [Related]
16. Transducin-alpha C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. Garcia PD; Onrust R; Bell SM; Sakmar TP; Bourne HR EMBO J; 1995 Sep; 14(18):4460-9. PubMed ID: 7556089 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform infrared spectroscopic analysis of altered reaction pathways in site-directed mutants: the D212N mutant of bacteriorhodopsin expressed in Halobacterium halobium. Braiman MS; Klinger AL; Doebler R Biophys J; 1992 Apr; 62(1):56-8. PubMed ID: 1600099 [No Abstract] [Full Text] [Related]
18. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
19. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism. Jung KH; Spudich JL J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883 [TBL] [Abstract][Full Text] [Related]
20. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit. Artemyev NO Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]