These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 8433984)
21. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Glenn JK; Gold MH Arch Biochem Biophys; 1985 Nov; 242(2):329-41. PubMed ID: 4062285 [TBL] [Abstract][Full Text] [Related]
22. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Ning D; Wang H; Ding C; Lu H Biodegradation; 2010 Nov; 21(6):889-901. PubMed ID: 20333538 [TBL] [Abstract][Full Text] [Related]
23. Nitrogen-deregulated mutants of Phanerochaete chrysosporium--a lignin-degrading basidiomycete. Boominathan K; Dass SB; Randall TA; Reddy CA Arch Microbiol; 1990; 153(6):521-7. PubMed ID: 2369262 [TBL] [Abstract][Full Text] [Related]
24. Heterologous expression and reconstitution of fungal Mn peroxidase. Whitwam R; Tien M Arch Biochem Biophys; 1996 Sep; 333(2):439-46. PubMed ID: 8809085 [TBL] [Abstract][Full Text] [Related]
25. The white rot basidiomycete Kapich AN; Suzuki H; Hirth KC; Fernández-Fueyo E; Martínez AT; Houtman CJ; Hammel KE Appl Environ Microbiol; 2024 Apr; 90(4):e0204423. PubMed ID: 38483171 [TBL] [Abstract][Full Text] [Related]
26. Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Lackner R; Srebotnik E; Messner K Biochem Biophys Res Commun; 1991 Aug; 178(3):1092-8. PubMed ID: 1872832 [TBL] [Abstract][Full Text] [Related]
27. Glyoxylate-supported reactions catalyzed by Mn peroxidase of Phanerochaete chrysosporium: activity in the absence of added hydrogen peroxide. Kuan IC; Tien M Arch Biochem Biophys; 1993 May; 302(2):447-54. PubMed ID: 8387747 [TBL] [Abstract][Full Text] [Related]
28. Lignin peroxidase-negative mutant of the white-rot basidiomycete Phanerochaete chrysosporium. Boominathan K; Dass SB; Randall TA; Kelley RL; Reddy CA J Bacteriol; 1990 Jan; 172(1):260-5. PubMed ID: 2294087 [TBL] [Abstract][Full Text] [Related]
29. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Datta A; Bettermann A; Kirk TK Appl Environ Microbiol; 1991 May; 57(5):1453-60. PubMed ID: 1854201 [TBL] [Abstract][Full Text] [Related]
30. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Hammel KE; Mozuch MD; Jensen KA; Kersten PJ Biochemistry; 1994 Nov; 33(45):13349-54. PubMed ID: 7947743 [TBL] [Abstract][Full Text] [Related]
31. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498 [TBL] [Abstract][Full Text] [Related]
32. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Bumpus JA; Brock BJ Appl Environ Microbiol; 1988 May; 54(5):1143-50. PubMed ID: 3389809 [TBL] [Abstract][Full Text] [Related]
33. Phosphorylation of lignin peroxidases from Phanerochaete chrysosporium. Identification of mannose 6-phosphate. Kuan IC; Tien M J Biol Chem; 1989 Dec; 264(34):20350-5. PubMed ID: 2584220 [TBL] [Abstract][Full Text] [Related]
34. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar]. Papinutti VL; Diorio LA; Forchiassin F Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976 [TBL] [Abstract][Full Text] [Related]
35. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279 [TBL] [Abstract][Full Text] [Related]
36. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
37. [Function of nitric oxide in initiating production of lignin degrading peroxidases by Phanerochaete chrysosporium]. Zheng Y; Qiu A; Li W; Zheng F; Zhang L; Shi Y; Zheng G; Zou Y Wei Sheng Wu Xue Bao; 2013 Mar; 53(3):249-58. PubMed ID: 23678571 [TBL] [Abstract][Full Text] [Related]
38. Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Orth AB; Denny M; Tien M Appl Environ Microbiol; 1991 Sep; 57(9):2591-6. PubMed ID: 1768132 [TBL] [Abstract][Full Text] [Related]
39. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Dhawale SW; Dhawale SS; Dean-Ross D Appl Environ Microbiol; 1992 Sep; 58(9):3000-6. PubMed ID: 1444413 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Kishi K; Wariishi H; Marquez L; Dunford HB; Gold MH Biochemistry; 1994 Jul; 33(29):8694-701. PubMed ID: 8038159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]