These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8434009)

  • 1. Using three-color chromosome painting to test chromosome aberration models.
    Lucas JN; Sachs RK
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1484-7. PubMed ID: 8434009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of chromosome painting. II. A detailed analysis of aberrations following high doses of ionizing radiation in vitro.
    Tucker JD; Lee DA; Moore DH
    Int J Radiat Biol; 1995 Jan; 67(1):19-28. PubMed ID: 7531743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Comput Appl Biosci; 1995 Aug; 11(4):389-97. PubMed ID: 8521048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering of radiation-produced breaks along chromosomes: modelling the effects on chromosome aberrations.
    Sachs RK; Chen AM; Simpson PJ; Hlatky LR; Hahnfeldt P; Savage JR
    Int J Radiat Biol; 1999 Jun; 75(6):657-72. PubMed ID: 10404995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction kinetics for the development of radiation-induced chromosome aberrations.
    Hlatky L; Sachs R; Hahnfeldt P
    Int J Radiat Biol; 1991 May; 59(5):1147-72. PubMed ID: 1675235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage in non-proliferating cells subjected to ionizing irradiation at high or low dose rates.
    Sachs RK; Chen P; Hahnfeldt P; Lai D; Hlatky LR
    J Math Biol; 1993; 31(3):291-315. PubMed ID: 8468538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-induced damage, repair and exchange formation in different chromosomes of human fibroblasts determined by fluorescence in situ hybridization.
    Kovacs MS; Evans JW; Johnstone IM; Brown JM
    Radiat Res; 1994 Jan; 137(1):34-43. PubMed ID: 8265786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry.
    Sachs RK; Levy D; Chen AM; Simpson PJ; Cornforth MN; Ingerman EA; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Dec; 76(12):1579-88. PubMed ID: 11133039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejoining and misrejoining of radiation-induced chromatin breaks. II. Biophysical Model.
    Wu H; Durante M; George K; Goodwin EH; Yang TC
    Radiat Res; 1996 Mar; 145(3):281-8. PubMed ID: 8927695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations.
    Cucinotta FA; Nikjoo H; O'Neill P; Goodhead DT
    Int J Radiat Biol; 2000 Nov; 76(11):1463-74. PubMed ID: 11098849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA damage caused by ionizing radiation.
    Sachs RK; Chen PL; Hahnfeldt PJ; Hlatky LR
    Math Biosci; 1992 Dec; 112(2):271-303. PubMed ID: 1490054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of I-SceI induced DSB at a specific site of chromosome in human cells: influence of low-dose, low-dose-rate gamma-rays.
    Yatagai F; Suzuki M; Ishioka N; Ohmori H; Honma M
    Radiat Environ Biophys; 2008 Nov; 47(4):439-44. PubMed ID: 18568359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course solutions of the Sax-Markov binary eurejoining/misrejoining model of DNA double-strand breaks.
    Radivoyevitch T
    Radiat Environ Biophys; 2000 Dec; 39(4):265-73. PubMed ID: 11200970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a three-color chromosome in situ suppression technique for the detection of past radiation exposure.
    Gebhart E; Neubauer S; Schmitt G; Birkenhake S; Dunst J
    Radiat Res; 1996 Jan; 145(1):47-52. PubMed ID: 8532836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of nonreciprocal chromosome exchanges in irradiated human fibroblasts by fluorescence in situ hybridization.
    Brown JM; Kovacs MS
    Radiat Res; 1993 Oct; 136(1):71-6. PubMed ID: 8210341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: proximity effects in the production of chromosome aberrations by ionizing radiation.
    Sachs RK; Chen AM; Brenner DJ
    Int J Radiat Biol; 1997 Jan; 71(1):1-19. PubMed ID: 9020958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage, repair and chromosomal damage.
    Bryant PE
    Int J Radiat Biol; 1997 Jun; 71(6):675-80. PubMed ID: 9246182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Track structure, chromosome geometry and chromosome aberrations.
    Brenner DJ; Ward JF; Sachs RK
    Basic Life Sci; 1994; 63():93-109; discussion 109-13. PubMed ID: 7755549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.