BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8434558)

  • 1. Glycation and oxidation: a role in the pathogenesis of atherosclerosis.
    Lyons TJ
    Am J Cardiol; 1993 Feb; 71(6):26B-31B. PubMed ID: 8434558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoprotein glycation and its metabolic consequences.
    Lyons TJ
    Diabetes; 1992 Oct; 41 Suppl 2():67-73. PubMed ID: 1526339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles.
    Knott HM; Brown BE; Davies MJ; Dean RT
    Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Non-enzymatic glycosylation of lipoproteins in the pathogenesis of atherosclerosis in diabetics].
    Calvo C
    Rev Med Chil; 1997 Apr; 125(4):460-5. PubMed ID: 9460289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques.
    Imanaga Y; Sakata N; Takebayashi S; Matsunaga A; Sasaki J; Arakawa K; Nagai R; Horiuchi S; Itabe H; Takano T
    Atherosclerosis; 2000 Jun; 150(2):343-55. PubMed ID: 10856526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis.
    Hunt JV; Bottoms MA; Clare K; Skamarauskas JT; Mitchinson MJ
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):243-9. PubMed ID: 8198540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoxidation and lipid peroxidation of low-density lipoprotein can synergistically enhance atherogenesis.
    Sakata N; Uesugi N; Takebayashi S; Nagai R; Jono T; Horiuchi S; Takeya M; Itabe H; Takano T; Myint T; Taniguchi N
    Cardiovasc Res; 2001 Feb; 49(2):466-75. PubMed ID: 11164857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation: evidence of their presence in atherosclerotic lesions.
    Ravandi A; Kuksis A; Shaikh NA
    Arterioscler Thromb Vasc Biol; 2000 Feb; 20(2):467-77. PubMed ID: 10669645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study.
    Sobal G; Menzel J; Sinzinger H
    Prostaglandins Leukot Essent Fatty Acids; 2000 Oct; 63(4):177-86. PubMed ID: 11049692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation as an atherogenic modification of LDL.
    Younis N; Sharma R; Soran H; Charlton-Menys V; Elseweidy M; Durrington PN
    Curr Opin Lipidol; 2008 Aug; 19(4):378-84. PubMed ID: 18607185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
    Kawamura M; Heinecke JW; Chait A
    J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins.
    Aviram M
    Antioxid Redox Signal; 1999; 1(4):585-94. PubMed ID: 11233155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Lipoprotein glycation and glycoxidation: their importance in diabetes mellitus].
    Actis Dato SM; Rebolledo OR
    Medicina (B Aires); 2000; 60(5 Pt 1):645-56. PubMed ID: 11188909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nonenzymatic glycosylation in atherogenesis.
    Cerami A; Vlassara H; Brownlee M
    J Cell Biochem; 1986; 30(2):111-20. PubMed ID: 3517022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Serum lipoprotein and atherogenicity--relationship with particle size and composition of low density lipoproteins, and their modifications by oxidation and glycation].
    Takeuchi N; Saheki S
    Rinsho Byori; 1995 Aug; 43(8):753-62. PubMed ID: 7474432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein.
    Brownlee M; Vlassara H; Cerami A
    Diabetes; 1985 Sep; 34(9):938-41. PubMed ID: 4029512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of cultured smooth muscle cell proliferation and injury, utilizing glycated low density lipoproteins with slight oxidation, auto-oxidation, or extensive oxidation.
    Taguchi S; Oinuma T; Yamada T
    J Atheroscler Thromb; 2000; 7(3):132-7. PubMed ID: 11480453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium antagonists as inhibitors of in vitro low density lipoprotein oxidation and glycation.
    Sobal G; Menzel EJ; Sinzinger H
    Biochem Pharmacol; 2001 Feb; 61(3):373-9. PubMed ID: 11172743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis.
    Parthasarathy S; Steinberg D; Witztum JL
    Annu Rev Med; 1992; 43():219-25. PubMed ID: 1580586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of LDL and its subfractions to glycation.
    Soran H; Durrington PN
    Curr Opin Lipidol; 2011 Aug; 22(4):254-61. PubMed ID: 21734572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.