These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 84346)

  • 1. Improved sodium and PAH transport in the isolated fluorocarbon-perfused rat kidney.
    Franke H; Mályusz M; Runge D
    Nephron; 1978; 22(4-6):423-31. PubMed ID: 84346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excretion of para-aminohippurate in the isolated perfused rat kidney: net secretion and net reabsorption.
    MacDougall ML; Wiegmann TB
    J Physiol; 1988 Mar; 397():459-69. PubMed ID: 3411514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdependence of O2 consumption, renal NEFA pattern and N-acetylation of PAH in the isolated perfused rat kidney. Effect of long-chain NEFA and of PGF2 alpha on the renal N-acetyltransferase activity.
    Mályusz M; Ehrens J; Uschtrin D
    Ren Physiol; 1982; 5(4):165-72. PubMed ID: 7122980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of unconjugated bilirubin on the uptake of p-aminohippuric acid by the isolated perfused rat kidney.
    Comín EJ; Elías MM; Grossman M; Rodriguez Garay EA
    Res Commun Chem Pathol Pharmacol; 1981 Oct; 34(1):169-72. PubMed ID: 7313301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of para-aminohippurate transport in the isolated perfused kidney by an inhibitor of protein binding in uremia.
    Depner TA; Sanaka T; Stanfel LA
    Am J Kidney Dis; 1984 Jan; 3(4):280-6. PubMed ID: 6691343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Function and morphology of isolated rat kidney following cellfree perfusion with various plasmaexpanders (author's transl)].
    Franke H; Sobotta EE; Witzki G; Unsicker K
    Anaesthesist; 1975 May; 24(5):231-8. PubMed ID: 1220580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of penicillin pretreatment on renal tubular para-aminohippurate transport in the immature rat.
    Noordewier B; Withrow CD
    Can J Physiol Pharmacol; 1979 Jan; 57(1):24-30. PubMed ID: 427644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium inhibition of renal tubular p-aminohippurate transport in the rat: relation to plasma 2-oxoglutarate.
    Szczepanska-Konkel M; Sadowski J; Angielski S
    Acta Physiol Hung; 1983; 62(3-4):235-43. PubMed ID: 6666606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+ gradient-dependent p-aminohippurate (PAH) transport in rat basolateral membrane vesicles.
    Kasher JS; Holohan PD; Ross CR
    J Pharmacol Exp Ther; 1983 Oct; 227(1):122-9. PubMed ID: 6312013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of low [Ca2+] and La3+ on PAH transport by isolated perfused renal tubules.
    Dantzler WH; Brokl OH
    Am J Physiol; 1984 Feb; 246(2 Pt 2):F175-87. PubMed ID: 6696119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of glomerular filtration rate on renal PAH secretion rate in the rat kidney. Dependency of PAH extraction on renal filtration fraction.
    Häberle DA; Ruhland G; Lausser A; Moore L; Neiss A
    Pflugers Arch; 1978 Jul; 375(2):131-9. PubMed ID: 567783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verapamil and quinidine effects on PAH transport by isolated perfused renal tubules.
    Dantzler WH; Brokl OH
    Am J Physiol; 1984 Feb; 246(2 Pt 2):F188-200. PubMed ID: 6696120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of [14C]urate and [3H]PAH in isolated proximal tubular segments of the rabbit kidney.
    Schäli C; Roch-Ramel F
    Am J Physiol; 1980 Sep; 239(3):F222-7. PubMed ID: 7435561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal inhibition of p-aminohippurate transport in flounder renal tissue: sites of HgCl2 action.
    Miller DS
    J Pharmacol Exp Ther; 1981 Nov; 219(2):428-34. PubMed ID: 6270307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of Na+-independent stimulation of renal transport of p-aminohippurate by exogenous metabolites.
    Sheikh MI; Møller JV
    Biochem Pharmacol; 1983 Sep; 32(18):2745-9. PubMed ID: 6626245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles.
    Shimada H; Moewes B; Burckhardt G
    Am J Physiol; 1987 Nov; 253(5 Pt 2):F795-801. PubMed ID: 3120599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation between sodium transport and oxygen consumption in isolated perfused rat kidney.
    Swartz RD; Silva P; Hallac R; Epstein FH
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():123-32. PubMed ID: 616355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-dependence of p-aminohippurate transport by rat kidney cortex slices.
    Hayashi H; Hoshi T
    Arch Int Pharmacodyn Ther; 1979 Jul; 240(1):103-15. PubMed ID: 507989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentrative PAH transport by rabbit kidney slices in the absence of metabolic energy.
    Podevin RA; Boumendil-Podevin EF; Priol C
    Am J Physiol; 1978 Oct; 235(4):F278-85. PubMed ID: 696868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between sodium transport and oxygen consumption in the isolated perfused rat kidney.
    McTigue M; Ting GO; Weiner MW
    Ren Physiol; 1983; 6(3):112-29. PubMed ID: 6867464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.