These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8434888)

  • 1. GAP-43 immunoreactivity is detected in the nerve terminals of patients with amyotrophic lateral sclerosis.
    Ueki A; Namba Y; Otsuka M; Okuno M; Nishimura M; Oda M; Ikeda K
    Ann Neurol; 1993 Feb; 33(2):226-7. PubMed ID: 8434888
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of GAP-43 in relation to CGRP and synaptic vesicle markers in rat skeletal muscles during development.
    Li JY; Dahlström AB
    Brain Res Dev Brain Res; 1993 Aug; 74(2):269-82. PubMed ID: 7691435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic terminals express a growth associated protein (GAP-43) in the adult rat spinal cord.
    Ching YP; Averill S; Wilkin GP; Wotherspoon G; Priestley JV
    Neurosci Lett; 1994 Feb; 167(1-2):67-72. PubMed ID: 8177531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis.
    Siklós L; Engelhardt J; Harati Y; Smith RG; Joó F; Appel SH
    Ann Neurol; 1996 Feb; 39(2):203-16. PubMed ID: 8967752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesion-specific pattern of immunocytochemical distribution of growth-associated protein B-50 (GAP-43) in the cerebellum of Weaver and PCD-mutant mice: lack of B-50 involvement in neuroplasticity of Purkinje cell terminals?
    Bäurle J; Oestreicher AB; Gispen WH; Grüsser-Cornehls U
    J Neurosci Res; 1994 Jun; 38(3):327-35. PubMed ID: 7932867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments.
    Swarup V; Phaneuf D; Bareil C; Robertson J; Rouleau GA; Kriz J; Julien JP
    Brain; 2011 Sep; 134(Pt 9):2610-26. PubMed ID: 21752789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous ADP-ribosylation of phosphoprotein B-50/GAP-43 and other neuronal substrates.
    Zwiers H; Hollenberg MD; McLean KN; Philibert KD
    Adv Exp Med Biol; 1997; 419():279-88. PubMed ID: 9193667
    [No Abstract]   [Full Text] [Related]  

  • 8. GAP-43 gene expression is increased in anterior horn cells of amyotrophic lateral sclerosis.
    Parhad IM; Oishi R; Clark AW
    Ann Neurol; 1992 Jun; 31(6):593-7. PubMed ID: 1387517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNAP25 and GAP-43 behave differently in decentralized rat superior cervical ganglia.
    Hou XE; Lundmark K; Dahlstrom A
    Neuroreport; 1997 Mar; 8(4):1051-6. PubMed ID: 9141091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripherin immunoreactive structures in amyotrophic lateral sclerosis.
    Migheli A; Pezzulo T; Attanasio A; Schiffer D
    Lab Invest; 1993 Feb; 68(2):185-91. PubMed ID: 8441252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural examination of B-50(GAP-43) immunoreactivity in rat jejunal villi.
    Lhoták S; Oestreicher AB; Stead RH
    Histochem J; 1995 Apr; 27(4):272-9. PubMed ID: 7635759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GAP43 identifies developing muscle cells in human embryos.
    Moos T; Christensen LR
    Neuroreport; 1993 Sep; 4(12):1299-302. PubMed ID: 8260609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal gene expression in amyotrophic lateral sclerosis.
    Clark AW; Tran PM; Parhad IM; Krekoski CA; Julien JP
    Brain Res Mol Brain Res; 1990 Jan; 7(1):75-83. PubMed ID: 2153897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal intermediate filaments and ALS: a new look at an old question.
    Xiao S; McLean J; Robertson J
    Biochim Biophys Acta; 2006; 1762(11-12):1001-12. PubMed ID: 17045786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alzheimer's disease. Amyloid precursor on the G(o).
    Hanley MR; Selkoe DJ
    Nature; 1993 Mar; 362(6415):14-5. PubMed ID: 8383293
    [No Abstract]   [Full Text] [Related]  

  • 16. Nerve growth factor induced modification of presynaptic elements in adult visual cortex in vivo.
    Liu Y; Meiri KF; Cynader MS; Gu Q
    Brain Res; 1996 Sep; 732(1-2):36-42. PubMed ID: 8891266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased phospho-adducin immunoreactivity in a murine model of amyotrophic lateral sclerosis.
    Shan X; Hu JH; Cayabyab FS; Krieger C
    Neuroscience; 2005; 134(3):833-46. PubMed ID: 15994023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis.
    Plaitakis A
    Ann Neurol; 1990 Jul; 28(1):3-8. PubMed ID: 1973889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS).
    Niebrój-Dobosz I; Dziewulska D; Kwieciński H
    Folia Neuropathol; 2004; 42(3):151-6. PubMed ID: 15535033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis.
    Vucic S; Kiernan MC
    Curr Mol Med; 2009 Apr; 9(3):255-72. PubMed ID: 19355908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.