These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8434909)

  • 41. Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on in situ fiber degradation, ruminal fermentation, and microbial protein synthesis in nonlactating cows fed alfalfa or bromegrass hay.
    Varel VH; Kreikemeier KK
    J Anim Sci; 1994 Jul; 72(7):1814-22. PubMed ID: 7928761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).
    Zhao XH; Liu CJ; Liu Y; Li CY; Yao JH
    J Anim Physiol Anim Nutr (Berl); 2013 Dec; 97(6):1161-9. PubMed ID: 23278844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    MouriƱo F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J; Ben-Ghedalia D; Morrison M
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochanin A improves fibre fermentation by cellulolytic bacteria.
    Harlow BE; Flythe MD; Aiken GE
    J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Miron J
    J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle.
    Cardozo PW; Calsamiglia S; Ferret A; Kamel C
    J Anim Sci; 2005 Nov; 83(11):2572-9. PubMed ID: 16230654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.
    Kenealy WR; Cao Y; Weimer PJ
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets.
    Varel VH; Dehority BA
    Appl Environ Microbiol; 1989 Jan; 55(1):148-53. PubMed ID: 2705767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially.
    Fondevila M; Dehority BA
    J Appl Bacteriol; 1994 Nov; 77(5):541-8. PubMed ID: 8002478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro.
    Weimer PJ; Lopez-Guisa JM; French AD
    Appl Environ Microbiol; 1990 Aug; 56(8):2421-9. PubMed ID: 2403252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of concentrate-to-forage ratios and 2-methylbutyrate supplementation on ruminal fermentation, bacteria abundance and urinary excretion of purine derivatives in Chinese Simmental steers.
    Wang C; Liu Q; Guo G; Huo WJ; Pei CX; Zhang SL; Wang H
    J Anim Physiol Anim Nutr (Berl); 2018 Aug; 102(4):901-909. PubMed ID: 29717516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture.
    Saluzzi L; Smith A; Stewart CS
    J Gen Microbiol; 1993 Nov; 139(11):2865-73. PubMed ID: 8277262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):267-72. PubMed ID: 3567745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. News & notes: paper digestion by the cellulolytic ruminal bacterium Fibrobacter succinogenes.
    Martin SA; Martin JA
    Curr Microbiol; 1998 Dec; 37(6):431-2. PubMed ID: 9806983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of forage source on ruminal microbial nitrogen metabolism and carbohydrate digestion in continuous culture.
    Dahlberg EM; Stern MD; Ehle FR
    J Anim Sci; 1988 Aug; 66(8):2071-83. PubMed ID: 3209511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of Moringa oleifera seed extract on rumen fermentation in vitro.
    Hoffmann EM; Muetzel S; Becker K
    Arch Tierernahr; 2003 Feb; 57(1):65-81. PubMed ID: 12801080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.