BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 8435876)

  • 1. Effect of 5-methylcytosine as a neighboring base on methylation of DNA guanine by N-methyl-N-nitrosourea.
    Mathison BH; Said B; Shank RC
    Carcinogenesis; 1993 Feb; 14(2):323-7. PubMed ID: 8435876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of human O6-methylguanine-DNA methyltransferase by 5-methylcytosine.
    Bentivegna SS; Bresnick E
    Cancer Res; 1994 Jan; 54(2):327-9. PubMed ID: 8275462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Methylcytosine in CpG sites and the reactivity of nearest neighboring guanines toward the carcinogen aflatoxin B1-8,9-epoxide.
    Ross MK; Mathison BH; Said B; Shank RC
    Biochem Biophys Res Commun; 1999 Jan; 254(1):114-9. PubMed ID: 9920742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methylation by N-methyl-N-nitrosourea: methylation pattern changes in single- and double-stranded DNA, and in DNA with mismatched or bulged guanines.
    Wurdeman RL; Douskey MC; Gold B
    Nucleic Acids Res; 1993 Oct; 21(21):4975-80. PubMed ID: 8177747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous 5-methylcytosine protects neighboring guanines from N7 and O6-methylation and O6-pyridyloxobutylation by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
    Ziegel R; Shallop A; Upadhyaya P; Jones R; Tretyakova N
    Biochemistry; 2004 Jan; 43(2):540-9. PubMed ID: 14717610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA sequence dependence of guanine-O6 alkylation by the N-nitroso carcinogens N-methyl- and N-ethyl-N-nitrosourea.
    Sendowski K; Rajewsky MF
    Mutat Res; 1991; 250(1-2):153-60. PubMed ID: 1944330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative and qualitative analysis of DNA methylation at N3-adenine by N-methyl-N-nitrosourea.
    Kelly JD; Shah D; Chen FX; Wurdeman R; Gold B
    Chem Res Toxicol; 1998 Dec; 11(12):1481-6. PubMed ID: 9860491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine.
    Brown TC; Jiricny J
    Cell; 1987 Sep; 50(6):945-50. PubMed ID: 3040266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypomethylation of DNA in Raji cells after treatment with N-methyl-N-nitrosourea.
    Boehm TL; Drahovsky D
    Carcinogenesis; 1981; 2(1):39-42. PubMed ID: 7273286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.
    Ji D; Lin K; Song J; Wang Y
    Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase.
    Tollefsbol TO; Hutchison CA
    J Mol Biol; 1997 Jun; 269(4):494-504. PubMed ID: 9217255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence specificity of guanine alkylation and repair.
    Dolan ME; Oplinger M; Pegg AE
    Carcinogenesis; 1988 Nov; 9(11):2139-43. PubMed ID: 3180351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of substrate.
    Butkus V; Klimasauskas S; Kersulyte D; Vaitkevicius D; Lebionka A; Janulaitis A
    Nucleic Acids Res; 1985 Aug; 13(16):5727-46. PubMed ID: 2994011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA mismatch binding and incision at modified guanine bases by extracts of mammalian cells: implications for tolerance to DNA methylation damage.
    Griffin S; Branch P; Xu YZ; Karran P
    Biochemistry; 1994 Apr; 33(16):4787-93. PubMed ID: 8161538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2).
    Valinluck V; Tsai HH; Rogstad DK; Burdzy A; Bird A; Sowers LC
    Nucleic Acids Res; 2004; 32(14):4100-8. PubMed ID: 15302911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. M.HhaI binds tightly to substrates containing mismatches at the target base.
    Klimasauskas S; Roberts RJ
    Nucleic Acids Res; 1995 Apr; 23(8):1388-95. PubMed ID: 7753630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cytosine methylation at restriction sites on deoxyribonucleic acid (DNA) typing.
    Washio K; Ueda S; Misawa S
    J Forensic Sci; 1990 Nov; 35(6):1277-83. PubMed ID: 1979803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of heavy methylation in human repetitive DNA subsets by a monoclonal antibody against 5-methylcytosine.
    Sano H; Imokawa M; Sager R
    Biochim Biophys Acta; 1988 Nov; 951(1):157-65. PubMed ID: 2847796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitution of 5-methylcytosines for cytosines enhances the stability of topoisomerase I-DNA complexes and modulates the sequence selectivity of camptothecin-induced DNA cleavage.
    Carrasco C; Waring MJ; Bailly C
    FEBS Lett; 1998 Mar; 425(2):337-40. PubMed ID: 9559675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases.
    Butkus V; Petrauskiene L; Maneliene Z; Klimasauskas S; Laucys V; Janulaitis A
    Nucleic Acids Res; 1987 Sep; 15(17):7091-102. PubMed ID: 2821492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.