BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8436620)

  • 1. Role of nitric oxide in the cerebral vasodilatory responses to vasopressin and oxytocin in dogs.
    Oyama H; Suzuki Y; Satoh S; Kajita Y; Takayasu M; Shibuya M; Sugita K
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):285-90. PubMed ID: 8436620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effect of L-arginine and superoxide dismutase on the spastic basilar artery after subarachnoid hemorrhage in dogs.
    Kajita Y; Suzuki Y; Oyama H; Tanazawa T; Takayasu M; Shibuya M; Sugita K
    J Neurosurg; 1994 Mar; 80(3):476-83. PubMed ID: 8113861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of vasopressin and oxytocin on canine cerebral circulation in vivo.
    Suzuki Y; Satoh S; Kimura M; Oyama H; Asano T; Shibuya M; Sugita K
    J Neurosurg; 1992 Sep; 77(3):424-31. PubMed ID: 1506890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery.
    Cosentino F; Sill JC; Katusić ZS
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H413-8. PubMed ID: 8383455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunction of nitric oxide in the spastic basilar arteries after subarachnoid hemorrhage.
    Suzuki Y; Kajita Y; Oyama H; Tanazawa T; Takayasu M; Shibuya M; Sugita K
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S83-7. PubMed ID: 7836691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating V1-vasopressinergic receptors.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    J Pharmacol Exp Ther; 1986 Jan; 236(1):166-70. PubMed ID: 3001282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H; Katusic ZS
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional differences in the vasodilator response to vasopressin in canine cerebral arteries in vivo.
    Suzuki Y; Satoh S; Oyama H; Takayasu M; Shibuya M
    Stroke; 1993 Jul; 24(7):1049-53; discussion 1053-4. PubMed ID: 7686696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of extraluminally induced vasoconstrictions by endothelium-derived nitric oxide in the canine basilar artery.
    Minato H; Hashizume M; Masuda Y; Hosoki K
    Arzneimittelforschung; 1995 Jun; 45(6):675-8. PubMed ID: 7544129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasopressin mediated vasodilation of cerebral arteries.
    Suzuki Y; Satoh S; Oyama H; Takayasu M; Shibuya M; Sugita K
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S129-32. PubMed ID: 7836669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of local intra-arterial NG-monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator mechanism appears abnormal.
    Calver A; Collier J; Moncada S; Vallance P
    J Hypertens; 1992 Sep; 10(9):1025-31. PubMed ID: 1328361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats.
    Salomone S; Morel N; Godfraind T
    Br J Pharmacol; 1997 Jul; 121(6):1051-8. PubMed ID: 9249238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-arterial vasopressin in the human forearm: pharmacodynamics and the role of nitric oxide.
    Affolter JT; McKee SP; Helmy A; Jones CR; Newby DE; Webb DJ
    Clin Pharmacol Ther; 2003 Jul; 74(1):9-16. PubMed ID: 12844130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in regulation of basilar artery tone in vivo.
    Faraci FM
    Am J Physiol; 1990 Oct; 259(4 Pt 2):H1216-21. PubMed ID: 2121050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanism underlying basilar arterial constriction by intracisternal L-NNA in anesthetized dogs.
    Toda N; Ayajiki K; Okamura T
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H103-7. PubMed ID: 8342620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vasopressin on regional cerebral blood flow in dogs.
    Tsugane S; Suzuki Y; Takayasu M; Shibuya M; Sugita K
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S133-6. PubMed ID: 7836670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasodilation by intrathecal lipopolysaccharide of the cerebral arteries after subarachnoid haemorrhage in dogs.
    Tanazawa T; Suzuki Y; Anzai M; Tsugane S; Takayasu M; Shibuya M
    Acta Neurochir (Wien); 1996; 138(3):330-7. PubMed ID: 8861703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular reactivity to vasopressin during diabetes: gender and regional differences.
    García-Villalón AL; Sanz E; Monge L; Fernández N; Martínez MA; Climent B; Diéguez G
    Eur J Pharmacol; 2003 Jan; 459(2-3):247-54. PubMed ID: 12524153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of arginine vasopressin and 1-desamino-8-D arginine vasopressin on forearm vasculature of healthy subjects and patients with a V2 receptor defect.
    van Lieburg AF; Knoers NV; Monnens LA; Smits P
    J Hypertens; 1995 Dec; 13(12 Pt 2):1695-700. PubMed ID: 8903635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differing effects of vasopressin on regional cerebral blood flow of dogs following intracisternal vs. intra-arterial administration.
    Tsugane S; Suzuki Y; Kano T; Takayasu M; Shibuya M; Sugita K
    Life Sci; 1994; 54(15):PL241-6. PubMed ID: 8152323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.