BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8436623)

  • 1. Triphasic response of rat intracerebral arterioles to increasing concentrations of vasopressin in vitro.
    Takayasu M; Kajita Y; Suzuki Y; Shibuya M; Sugita K; Ishikawa T; Hidaka H
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):304-9. PubMed ID: 8436623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxyhemoglobin enhancement of vasopressin-induced constriction in rat cerebral arterioles.
    Takayasu M; Kajita Y; Suzuki Y; Mori Y; Shibuya M; Sugita K; Hidaka H
    Life Sci; 1995; 56(5):PL123-7. PubMed ID: 7837927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats.
    Takayasu M; Kajita Y; Suzuki Y; Shibuya M; Sugita K; Hidaka H
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S63-6. PubMed ID: 7836689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses to vasopressin and desmopressin of human cerebral arteries.
    Martinez MC; Aldasoro M; Vila JM; Medina P; Lluch S
    J Pharmacol Exp Ther; 1994 Aug; 270(2):622-7. PubMed ID: 8071854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red wine polyphenols improve endothelium-dependent dilation in rat cerebral arterioles.
    Chan SL; Capdeville-Atkinson C; Atkinson J
    J Cardiovasc Pharmacol; 2008 Jun; 51(6):553-8. PubMed ID: 18496148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone medullary arterioles from ovariectomized rats have smaller baseline diameters but normal eNOS expression and NO-mediated dilation.
    Soukhova-O'Hare G; Lei Z; Falcone JC; Barati MT; Feitelson JB; Rao ChV; Fleming JT
    Life Sci; 2005 Aug; 77(15):1799-812. PubMed ID: 16019034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairment of neuronal nitric oxide synthase-dependent dilation of cerebral arterioles during chronic alcohol consumption.
    Sun H; Patel KP; Mayhan WG
    Alcohol Clin Exp Res; 2002 May; 26(5):663-70. PubMed ID: 12045474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery.
    Noguera I; Medina P; Segarra G; Martínez MC; Aldasoro M; Vila JM; Lluch S
    Br J Pharmacol; 1997 Oct; 122(3):431-8. PubMed ID: 9351498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNF-alpha modulates arteriolar reactivity secondary to a change in intimal permeability.
    Matsuki T; Duling BR
    Microcirculation; 2000 Dec; 7(6 Pt 1):411-8. PubMed ID: 11142338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the capsaicin-induced dilation of arterioles and venules in rat striated muscle.
    Kim C; Roberts AM; Joshua IG
    J Pharmacol Exp Ther; 1995 May; 273(2):605-10. PubMed ID: 7752061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAR-2 elicits afferent arteriolar vasodilation by NO-dependent and NO-independent actions.
    Trottier G; Hollenberg M; Wang X; Gui Y; Loutzenhiser K; Loutzenhiser R
    Am J Physiol Renal Physiol; 2002 May; 282(5):F891-7. PubMed ID: 11934700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries.
    Vanhoutte PM; Katusić ZS; Shepherd JT
    J Hypertens Suppl; 1984 Dec; 2(3):S421-2. PubMed ID: 6242563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles.
    Dietrich HH; Horiuchi T; Xiang C; Hongo K; Falck JR; Dacey RG
    J Vasc Res; 2009; 46(3):253-64. PubMed ID: 18984964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinesterase inhibitor donepezil dilates cerebral parenchymal arterioles via the activation of neuronal nitric oxide synthase.
    Nakahata K; Kinoshita H; Hama-Tomioka K; Ishida Y; Matsuda N; Hatakeyama N; Haba M; Kondo T; Hatano Y
    Anesthesiology; 2008 Jul; 109(1):124-9. PubMed ID: 18580182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles.
    Jimenez AH; Tanner MA; Caldwell WM; Myers PR
    Microvasc Res; 1996 May; 51(3):365-77. PubMed ID: 8992234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile responses of human thyroid arteries to vasopressin.
    Vila JM; Aldasoro M; Segarra G; Martínez-León JB; Mauricio MD; Lluch S; Medina P
    Life Sci; 2013 Oct; 93(15):525-9. PubMed ID: 24002018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible role of nitric oxide in autoregulatory response in rat intracerebral arterioles.
    Kajita Y; Takayasu M; Dietrich HH; Dacey RG
    Neurosurgery; 1998 Apr; 42(4):834-41; discussion 841-2. PubMed ID: 9574648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin mediated vasodilation of cerebral arteries.
    Suzuki Y; Satoh S; Oyama H; Takayasu M; Shibuya M; Sugita K
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S129-32. PubMed ID: 7836669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxyhemoglobin on local and propagated vasodilatory responses induced by adenosine, adenosine diphosphate, and adenosine triphosphate in rat cerebral arterioles.
    Kajita Y; Dietrich HH; Dacey RG
    J Neurosurg; 1996 Nov; 85(5):908-16. PubMed ID: 8893731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.