These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8436916)

  • 1. Uncoupling the correlates of locomotor costs: a factorial approach.
    Myers MJ; Steudel K; White SC
    J Exp Zool; 1993 Mar; 265(3):211-23. PubMed ID: 8436916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children.
    Frost G; Bar-Or O; Dowling J; Dyson K
    J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of running: a new perspective.
    Kram R; Taylor CR
    Nature; 1990 Jul; 346(6281):265-7. PubMed ID: 2374590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of altered stride frequency and contact time on leg-spring behavior in human running.
    Morin JB; Samozino P; Zameziati K; Belli A
    J Biomech; 2007; 40(15):3341-8. PubMed ID: 17602692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrelationships between mechanical power, energy transfers, and walking and running economy.
    Martin PE; Heise GD; Morgan DW
    Med Sci Sports Exerc; 1993 Apr; 25(4):508-15. PubMed ID: 8479306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris).
    Rubenson J; Henry HT; Dimoulas PM; Marsh RL
    J Exp Biol; 2006 Jul; 209(Pt 13):2395-408. PubMed ID: 16788023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetically optimal stride frequency in running: the effects of incline and decline.
    Snyder KL; Farley CT
    J Exp Biol; 2011 Jun; 214(Pt 12):2089-95. PubMed ID: 21613526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.
    Chappell MA; Garland T; Rezende EL; Gomes FR
    J Exp Biol; 2004 Oct; 207(Pt 22):3839-54. PubMed ID: 15472015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical model for size, speed and anatomical variations of the energetic costs of running mammals.
    Blanco RE; Gambini R
    J Theor Biol; 2006 Jul; 241(1):49-61. PubMed ID: 16352314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of independently altering body weight and body mass on the metabolic cost of running.
    Teunissen LP; Grabowski A; Kram R
    J Exp Biol; 2007 Dec; 210(Pt 24):4418-27. PubMed ID: 18055630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical and skeletal muscle determinants of maximum running speed with aging.
    Korhonen MT; Mero AA; Alén M; Sipilä S; Häkkinen K; Liikavainio T; Viitasalo JT; Haverinen MT; Suominen H
    Med Sci Sports Exerc; 2009 Apr; 41(4):844-56. PubMed ID: 19276848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors related to top running speed and economy.
    Nummela A; Keränen T; Mikkelsson LO
    Int J Sports Med; 2007 Aug; 28(8):655-61. PubMed ID: 17549657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model predicting locomotor cost from limb length via force production.
    Pontzer H
    J Exp Biol; 2005 Apr; 208(Pt 8):1513-24. PubMed ID: 15802675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running.
    Jordan K; Challis JH; Newell KM
    Hum Mov Sci; 2007 Feb; 26(1):87-102. PubMed ID: 17161484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.
    Rezende EL; Kelly SA; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2006; 79(1):83-99. PubMed ID: 16380930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long range correlations in the stride interval of running.
    Jordan K; Challis JH; Newell KM
    Gait Posture; 2006 Aug; 24(1):120-5. PubMed ID: 16182530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models and the scaling of energy costs for locomotion.
    Alexander RM
    J Exp Biol; 2005 May; 208(Pt 9):1645-52. PubMed ID: 15855396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H
    J Exp Biol; 2007 Feb; 210(Pt 3):484-94. PubMed ID: 17234618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.