These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 8439)
1. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium. Hirata H; Sone N; Yoshida M; Kagawa Y J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439 [TBL] [Abstract][Full Text] [Related]
2. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation. Dawson AG; Chappell JB Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211 [TBL] [Abstract][Full Text] [Related]
3. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. MacDonald RE; Lanyi LK Biochemistry; 1975 Jul; 14(13):2882-9. PubMed ID: 50859 [TBL] [Abstract][Full Text] [Related]
4. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii. Barnes EM; Roberts RR; Bhattacharyya P Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111 [TBL] [Abstract][Full Text] [Related]
5. Transport of nutrients by a thermophilic bacterium--reconstruction of vesicles from crystalline ATPase or solubilized alanine carrier. Kagawa Y J Cell Physiol; 1976 Dec; 89(4):569-73. PubMed ID: 137906 [TBL] [Abstract][Full Text] [Related]
6. Solubilization and partial purification of alanine carrier from membranes of a thermophilic bacterium and its reconstitution into functional vesicles. Hirata H; Sone N; Yoshida M; Kagawa Y Biochem Biophys Res Commun; 1976 Apr; 69(3):665-71. PubMed ID: 1267810 [No Abstract] [Full Text] [Related]
7. Proton transport by gastric membrane vesicles. Chang H; Saccomani G; Rabon E; Schackmann R; Sachs G Biochim Biophys Acta; 1977 Jan; 464(2):313-27. PubMed ID: 12816 [TBL] [Abstract][Full Text] [Related]
8. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. Lever JE J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232 [TBL] [Abstract][Full Text] [Related]
9. ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii. Bhattacharyya P; Barnes EM J Biol Chem; 1976 Sep; 251(18):56-14-9. PubMed ID: 9392 [TBL] [Abstract][Full Text] [Related]
10. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608 [TBL] [Abstract][Full Text] [Related]
11. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178 [No Abstract] [Full Text] [Related]
12. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients. Hell JW; Edelmann L; Hartinger J; Jahn R Biochemistry; 1991 Dec; 30(51):11795-800. PubMed ID: 1684290 [TBL] [Abstract][Full Text] [Related]
13. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH. Guffanti AA; Chiu E; Krulwich TA Arch Biochem Biophys; 1985 Jun; 239(2):327-33. PubMed ID: 4004268 [TBL] [Abstract][Full Text] [Related]
14. pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 . F1) and effects of tyrosyl residue modification. Sone N; Hamamoto T; Kagawa Y J Biol Chem; 1981 Mar; 256(6):2873-7. PubMed ID: 6451621 [TBL] [Abstract][Full Text] [Related]
15. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Schuldiner S; Fishkes H; Kanner BI Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Michel H; Oesterhelt D Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619 [TBL] [Abstract][Full Text] [Related]
17. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113 [TBL] [Abstract][Full Text] [Related]
18. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma]. Babich LG; Fomin VP; Kosterin SA Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629 [TBL] [Abstract][Full Text] [Related]
19. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity. Leblanc G; Le Grimellec C Biochim Biophys Acta; 1979 Jun; 554(1):168-79. PubMed ID: 36912 [TBL] [Abstract][Full Text] [Related]
20. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. Tsai KJ; Yoon KP; Lynn AR J Bacteriol; 1992 Jan; 174(1):116-21. PubMed ID: 1530844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]