BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8439158)

  • 1. Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae.
    Longo E; Vezinhet F
    Appl Environ Microbiol; 1993 Jan; 59(1):322-6. PubMed ID: 8439158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Chromosome polymorphism in the yeast Saccharomyces].
    Davydenko SG; Milovatskiĭ VS; Nesterova GF; Skliarova LL; Mezhevaia EV; Iarovoĭ BF
    Genetika; 1990 Dec; 26(12):2135-46. PubMed ID: 2086343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chromosomal constitution of wine strains of Saccharomyces cerevisiae.
    Bakalinsky AT; Snow R
    Yeast; 1990; 6(5):367-82. PubMed ID: 2220073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes.
    Naumov GI; Naumova ES; Lantto RA; Louis EJ; Korhola M
    Yeast; 1992 Aug; 8(8):599-612. PubMed ID: 1441740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the karyotype instability in natural wine yeast strains.
    Carro D; Piña B
    Yeast; 2001 Dec; 18(16):1457-70. PubMed ID: 11748723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of genetic background on the occurrence of chromosomal rearrangements in Saccharomyces cerevisiae.
    Fritsch ES; Schacherer J; Bleykasten-Grosshans C; Souciet JL; Potier S; de Montigny J
    BMC Genomics; 2009 Mar; 10():99. PubMed ID: 19267901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains.
    Nadal D; Carro D; Fernández-Larrea J; Piña B
    Appl Environ Microbiol; 1999 Apr; 65(4):1688-95. PubMed ID: 10103269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae.
    Bidenne C; Blondin B; Dequin S; Vezinhet F
    Curr Genet; 1992 Jul; 22(1):1-7. PubMed ID: 1611665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural translocation of a large segment of chromosome III to chromosome I in a laboratory strain of Saccharomyces cerevisiae.
    Camasses A
    Curr Genet; 1996 Aug; 30(3):218-23. PubMed ID: 8753650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker's yeasts.
    Codón AC; Benítez T; Korhola M
    Curr Genet; 1997 Oct; 32(4):247-59. PubMed ID: 9342404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae.
    Adams J; Puskas-Rozsa S; Simlar J; Wilke CM
    Curr Genet; 1992 Jul; 22(1):13-9. PubMed ID: 1611666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation.
    Puig S; Querol A; Barrio E; Pérez-Ortín JE
    Appl Environ Microbiol; 2000 May; 66(5):2057-61. PubMed ID: 10788381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.
    Tomitaka M; Taguchi H; Matsuoka M; Morimura S; Kida K; Akamatsu T
    J Biosci Bioeng; 2014 Jan; 117(1):65-70. PubMed ID: 23849804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A family of laboratory strains of Saccharomyces cerevisiae carry rearrangements involving chromosomes I and III.
    Casaregola S; Nguyen HV; Lepingle A; Brignon P; Gendre F; Gaillardin C
    Yeast; 1998 Apr; 14(6):551-64. PubMed ID: 9605505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reclassification of Saccharomyces strains by comparative electrophoretic karyotyping].
    Bai F; Jia J
    Wei Sheng Wu Xue Bao; 2000 Feb; 40(1):9-13. PubMed ID: 12548871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chromatin of the Saccharomyces cerevisiae centromere shows cell-type specific changes.
    Wilmen A; Hegemann JH
    Chromosoma; 1996 Apr; 104(7):489-503. PubMed ID: 8625737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for isolating disomic strains of Saccharomyces cerevisiae.
    Zebrowski DC; Kaback DB
    Yeast; 2008 May; 25(5):321-6. PubMed ID: 18437703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae.
    Kaboli S; Miyamoto T; Sunada K; Sasano Y; Sugiyama M; Harashima S
    J Biosci Bioeng; 2016 Jun; 121(6):638-644. PubMed ID: 26690924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.