These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8439166)

  • 1. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ
    Appl Environ Microbiol; 1993 Jan; 59(1):40-6. PubMed ID: 8439166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ
    FEMS Microbiol Lett; 1994 Oct; 122(3):217-22. PubMed ID: 7988863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B; Dawson KA; Strobel HJ
    Appl Environ Microbiol; 1994 Apr; 60(4):1087-92. PubMed ID: 8017905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens.
    Strobel HJ; Dawson KA
    FEMS Microbiol Lett; 1993 Nov; 113(3):291-6. PubMed ID: 8270194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85.
    Matte A; Forsberg CW; Verrinder Gibbins AM
    Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient transport by ruminal bacteria: a review.
    Martin SA
    J Anim Sci; 1994 Nov; 72(11):3019-31. PubMed ID: 7730197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylooligosaccharide utilization by the ruminal anaerobic bacterium Selenomonas ruminantium.
    Cotta MA; Whitehead TR
    Curr Microbiol; 1998 Apr; 36(4):183-9. PubMed ID: 9504982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
    Lee BD; Apel WA; DeVeaux LC; Sheridan PP
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii.
    Nobre A; Lucas C; Leão C
    Appl Environ Microbiol; 1999 Aug; 65(8):3594-8. PubMed ID: 10427054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 13. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospecting for L-arabinose/D-xylose symporters from Pichia guilliermondii and Aureobasidium leucospermi.
    da Silva RR; Prista C; Dias MCL; Boscolo M; da Silva R; Gomes E
    Braz J Microbiol; 2020 Mar; 51(1):145-150. PubMed ID: 31486050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of Selenomonas ruminantium strains capable of 2-deoxyribose utilization.
    Rasmussen MA
    Appl Environ Microbiol; 1993 Jul; 59(7):2077-81. PubMed ID: 8357244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii.
    Sugai JK; Delgenes JP
    Curr Microbiol; 1995 Oct; 31(4):239-44. PubMed ID: 7549770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae.
    Subtil T; Boles E
    Biotechnol Biofuels; 2012 Mar; 5():14. PubMed ID: 22424089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.