These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8439166)
21. Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis. Mountfort DO; Asher RA Appl Environ Microbiol; 1983 Dec; 46(6):1331-8. PubMed ID: 6660873 [TBL] [Abstract][Full Text] [Related]
22. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Strobel HJ; Russell JB Appl Environ Microbiol; 1991 Jan; 57(1):248-54. PubMed ID: 2036012 [TBL] [Abstract][Full Text] [Related]
23. The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. Lin L; Song H; Tu Q; Qin Y; Zhou A; Liu W; He Z; Zhou J; Xu J PLoS Genet; 2011 Oct; 7(10):e1002318. PubMed ID: 22022280 [TBL] [Abstract][Full Text] [Related]
24. Regulation of arabinose and xylose metabolism in Escherichia coli. Desai TA; Rao CV Appl Environ Microbiol; 2010 Mar; 76(5):1524-32. PubMed ID: 20023096 [TBL] [Abstract][Full Text] [Related]
25. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ mSystems; 2018; 3(5):. PubMed ID: 30374459 [TBL] [Abstract][Full Text] [Related]
26. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae. Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015 [TBL] [Abstract][Full Text] [Related]
27. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria. Cotta MA Appl Environ Microbiol; 1990 Dec; 56(12):3867-70. PubMed ID: 1707252 [TBL] [Abstract][Full Text] [Related]
28. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli. Choudhury D; Saini S Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539 [TBL] [Abstract][Full Text] [Related]
29. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform. Donzella L; Varela JA; Sousa MJ; Morrissey JP FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33890624 [TBL] [Abstract][Full Text] [Related]
31. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562 [TBL] [Abstract][Full Text] [Related]
32. p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Akin DE; Borneman WS; Rigsby LL; Martin SA Appl Environ Microbiol; 1993 Feb; 59(2):644-7. PubMed ID: 8434931 [TBL] [Abstract][Full Text] [Related]
34. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932 [TBL] [Abstract][Full Text] [Related]
35. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. Ruchala J; Sibirny AA FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044 [TBL] [Abstract][Full Text] [Related]
36. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. Aristilde L; Lewis IA; Park JO; Rabinowitz JD Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534 [TBL] [Abstract][Full Text] [Related]
37. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium. Martin SA J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219 [TBL] [Abstract][Full Text] [Related]
38. Pentose metabolism in Mycobacterium smegmatis: specificity of induction of pentose isomerases. Izumori K; Yamanaka K; Elbein D J Bacteriol; 1976 Nov; 128(2):587-91. PubMed ID: 977547 [TBL] [Abstract][Full Text] [Related]
39. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons. Kang HY; Song S; Park C Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469 [TBL] [Abstract][Full Text] [Related]
40. Selective inhibition of Klebsiella aerogenes growth on pentoses by pentitols. Izumori K; Yamanaka K J Bacteriol; 1978 Jun; 134(3):713-7. PubMed ID: 350845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]