BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8439169)

  • 1. Precipitation of cadmium by Clostridium thermoaceticum.
    Cunningham DP; Lundie LL
    Appl Environ Microbiol; 1993 Jan; 59(1):7-14. PubMed ID: 8439169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene.
    Wang CL; Lum AM; Ozuna SC; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):425-30. PubMed ID: 11549014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies.
    Bai HJ; Zhang ZM; Yang GE; Li BZ
    Bioresour Technol; 2008 Nov; 99(16):7716-22. PubMed ID: 18358716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.
    Wang CL; Maratukulam PD; Lum AM; Clark DS; Keasling JD
    Appl Environ Microbiol; 2000 Oct; 66(10):4497-502. PubMed ID: 11010904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.
    El-Baz AF; Sorour NM; Shetaia YM
    J Basic Microbiol; 2016 May; 56(5):520-30. PubMed ID: 26467054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide.
    Sharma PK; Balkwill DL; Frenkel A; Vairavamurthy MA
    Appl Environ Microbiol; 2000 Jul; 66(7):3083-7. PubMed ID: 10877810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    BMC Microbiol; 2013 Jul; 13():161. PubMed ID: 23855952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum.
    Lundie LL; Drake HL
    J Bacteriol; 1984 Aug; 159(2):700-3. PubMed ID: 6746575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.
    Arendsen AF; Soliman MQ; Ragsdale SW
    J Bacteriol; 1999 Mar; 181(5):1489-95. PubMed ID: 10049380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface.
    Wang CL; Clark DS; Keasling JD
    Biotechnol Bioeng; 2001 Nov; 75(3):285-91. PubMed ID: 11590601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum.
    Poston JM; Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4209-16. PubMed ID: 5924642
    [No Abstract]   [Full Text] [Related]  

  • 14. Sodium Hydrosulfide Mitigates Cadmium Toxicity by Promoting Cadmium Retention and Inhibiting Its Translocation from Roots to Shoots in Brassica napus.
    Yu Y; Zhou X; Zhu Z; Zhou K
    J Agric Food Chem; 2019 Jan; 67(1):433-440. PubMed ID: 30569699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of cadmium resistance in anaerobic bacterial enrichments degrading pentachlorophenol.
    Kamashwaran SR; Crawford DL
    Can J Microbiol; 2003 Jul; 49(7):418-24. PubMed ID: 14569282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris.
    Bai HJ; Zhang ZM; Guo Y; Yang GE
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):142-6. PubMed ID: 19167198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium exposure alters metabolomics of sulfur-containing amino acids in rat testes.
    Sugiura Y; Kashiba M; Maruyama K; Hoshikawa K; Sasaki R; Saito K; Kimura H; Goda N; Suematsu M
    Antioxid Redox Signal; 2005; 7(5-6):781-7. PubMed ID: 15890025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel potentiometric biosensor for selective L-cysteine determination using L-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode.
    Hassan SS; el-Baz AF; Abd-Rabboh HS
    Anal Chim Acta; 2007 Oct; 602(1):108-13. PubMed ID: 17936114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.
    Hsu T; Daniel SL; Lux MF; Drake HL
    J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.