BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8439283)

  • 1. The pKa of the catalytic histidine residue of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):15-9. PubMed ID: 8439283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate.
    Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pH-dependent behavior of catalytic activities of Azospirillum brasilense glutamate synthase and iodoacetamide modification of the enzyme provide evidence for a catalytic Cys-His ion pair.
    Vanoni MA; Accornero P; Carrera G; Curti B
    Arch Biochem Biophys; 1994 Mar; 309(2):222-30. PubMed ID: 8135531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase.
    Jez JM; Noel JP
    J Biol Chem; 2000 Dec; 275(50):39640-6. PubMed ID: 11006298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Shaw WV
    J Biol Chem; 1991 Jun; 266(18):11695-8. PubMed ID: 2050670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe.
    Mellor GW; Thomas EW; Topham CM; Brocklehurst K
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):289-96. PubMed ID: 8439297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phylogenetically conserved histidines of Escherichia coli porphobilinogen synthase are not required for catalysis.
    Mitchell LW; Volin M; Jaffe EK
    J Biol Chem; 1995 Oct; 270(41):24054-9. PubMed ID: 7592604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1990 Feb; 29(8):2075-80. PubMed ID: 2109633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.
    Thomas MP; Topham CM; Kowlessur D; Mellor GW; Thomas EW; Whitford D; Brocklehurst K
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):805-20. PubMed ID: 8010964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic comparison of procaspase-3 and caspase-3.
    Karki P; Lee J; Shin SY; Cho B; Park IS
    Arch Biochem Biophys; 2005 Oct; 442(1):125-32. PubMed ID: 16140256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent modification and active site-directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase.
    Zhang ZY; Davis JP; Van Etten RL
    Biochemistry; 1992 Feb; 31(6):1701-11. PubMed ID: 1737025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the C2-1H histidine NMR resonances in chloramphenicol acetyltransferase by a 13C-1H heteronuclear multiple quantum coherence method.
    Derrick JP; Lian LY; Roberts GC; Shaw WV
    FEBS Lett; 1991 Mar; 280(1):125-8. PubMed ID: 2053974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional tuning of the catalytic residue pK
    Hiebler K; Lengyel Z; CastaƱeda CA; Makhlynets OV
    Proteins; 2017 Sep; 85(9):1656-1665. PubMed ID: 28544090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site labeling of the Yersinia protein tyrosine phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402.
    Zhang ZY; Dixon JE
    Biochemistry; 1993 Sep; 32(36):9340-5. PubMed ID: 8369304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the essential histidine residue at the active site of Escherichia coli dehydroquinase.
    Deka RK; Kleanthous C; Coggins JR
    J Biol Chem; 1992 Nov; 267(31):22237-42. PubMed ID: 1429576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.